Publications by authors named "Corey R J Stephenson"

We report a synthesis of bicyclo[2.1.1]hexanes via an intramolecular formal (3+2) cycloaddition of allylated cyclopropanes bearing a 4-nitrobenzimine substituent.

View Article and Find Full Text PDF

In this report, we demonstrate olefin transposition/isomerization reactions catalyzed by a series of -pincer (1,3-bis(2-pyridylimino)isoindoline) Ru-hydride complexes. The protocol proceeds at room temperature for most substrates, achieving excellent yields, regioselectivity, and diastereoselectivity in short reaction times. The air-stable Ru-chloride derivatives of these complexes exhibit comparable reactivity enabling benchtop setup and synthetic versatility.

View Article and Find Full Text PDF

Phthalimide--oxyl (PINO) and related radicals are promising catalysts for C-H functionalization reactions. To date, only a small number of -oxyl derivatives have demonstrated improved activities over PINO. We postulate that the lack of success in identifying superior catalysts is associated not only with challenges in the design and synthesis of new structures, but also the way catalysts are evaluated and utilized.

View Article and Find Full Text PDF

The design of N-oxyl hydrogen atom transfer catalysts has proven challenging to date. Previous efforts have focused on the functionalization of the archetype, phthalimide-N-oxyl. Driven in part by the limited options for modification of this structure, this strategy has provided only modest improvements in reactivity and/or solubility.

View Article and Find Full Text PDF

Arylethylamines are popular structural elements in bioactive molecules but are often made through a linear series of synthetic steps. A modular protocol to assemble arylethylamines from alkenes in one step would represent a useful advance in discovery chemistry, though current limitations preclude a generally applicable method. In this work we disclose an aminoarylation of alkenes using aryl sulfinamide reagents as bifunctional amine and arene donors.

View Article and Find Full Text PDF

Recently, organic synthesis has seen a renaissance in radical chemistry due to the accessibility of mild methods for radical generation using visible light. While renewed interest in synthetic radical chemistry has been driven by the advent of photoredox catalysis, a resurgence of electron donor-acceptor (EDA) photochemistry has also led to many new radical transformations. Similar to photoredox catalysis, EDA photochemistry involves light-promoted single-electron transfer pathways.

View Article and Find Full Text PDF

Cuneane is a strained hydrocarbon that can be accessed via metal-catalyzed isomerization of cubane. The carbon atoms of cuneane define a polyhedron of the point group with six faces─two triangular, two quadrilateral, and two pentagonal. The rigidity, strain, and unique exit vectors of the cuneane skeleton make it a potential scaffold of interest for the synthesis of functional small molecules and materials.

View Article and Find Full Text PDF

Phthalimide-N-oxyl (PINO) is a valuable hydrogen-atom-transfer (HAT) catalyst for selective C-H functionalization. To advance and optimize PINO-catalysed HAT reactions, researchers have been focused on modifying the phthalimide core structure. Despite much effort and some notable advances, the modifications to date have centred on optimization of a single parameter of the catalyst, such as reactivity, solubility or stability.

View Article and Find Full Text PDF

A simple method for accessing trans-2,3-diaryl dihydrobenzofurans is reported. This approach leverages the equilibrium between quinone methide dimers and their persistent radicals. This equilibrium is disrupted by phenols that yield comparatively transient phenoxyl radicals, leading to cross-coupling between the persistent and transient radicals.

View Article and Find Full Text PDF

Within the realm of drug discovery, high-throughput experimentation techniques enable the rapid optimization of reactions and expedited generation of drug compound libraries for biological and pharmacokinetic evaluation. Herein we report the development of a segmented flow mass spectrometry-based platform to enable the rapid exploration of photoredox reactions for early-stage drug discovery. Specifically, microwell plate-based photochemical reaction screens were reformatted to segmented flow format to enable delivery to nanoelectrospray ionization-mass spectrometry analysis.

View Article and Find Full Text PDF

Recent advances in synthetic chemistry have seen a resurgence in the development of methods for visible light-mediated radical generation. Herein, we report the development of a photoactive ester based on a quinoline -oxide core structure, that provides a strong oxidant in its excited state. The heteroaromatic -oxide provides access to primary, secondary, and tertiary radical intermediates, and its application toward the development of a photochemical Minisci alkylation is reported.

View Article and Find Full Text PDF

Alkene aminoarylation with arylsulfonylacetamides via a visible-light mediated radical Smiles-Truce rearrangement represents a convenient approach to the privileged arylethylamine pharmacaphore traditionally generated by circuitous, multi-step sequences. Herein, we report detailed synthetic, spectroscopic, kinetic, and computational studies designed to interrogate the proposed mechanism, including the key aryl transfer event. The data are consistent with a rate-limiting 1,4-aryl migration occurring either via a stepwise process involving a radical Meisenheimer-like intermediate or in a concerted fashion dependent on both arene electronics and alkene sterics.

View Article and Find Full Text PDF

The field of strain-driven, radical formal cycloadditions is experiencing a surge in activity motivated by a renaissance in free radical chemistry and growing demand for sp -rich ring systems. The former has been driven in large part by the rise of photoredox catalysis, and the latter by adoption of the "Escape from Flatland" concept in medicinal chemistry. In the years since these broader trends emerged, dozens of formal cycloadditions, including catalytic, asymmetric variants, have been developed that operate via radical mechanisms.

View Article and Find Full Text PDF

Arylethylamines are abundant motifs in myriad natural products and pharmaceuticals, so efficient methods to synthesize them are valuable in drug discovery. In this work, we disclose an intramolecular alkene aminoarylation cascade that exploits the electrophilicity of a nitrogen-centered radical to form a C-N bond, then repurposes the nitrogen atom's sulfonyl activating group as a traceless linker to form a subsequent C-C bond. This photoredox catalysis protocol enables the preparation of densely substituted arylethylamines from commercially abundant aryl sulfonamides and unactivated alkenes under mild conditions.

View Article and Find Full Text PDF

Detailed herein is the development of a photochemical intermolecular formal [3+2] cycloaddition between cyclopropylimines and substituted alkenes to generate aminocyclopentane derivatives. The Schiff base of the cyclopropylimine was designed to enable a masked N-centered radical approach in which the requisite open-shell character was achieved upon excitation with visible light. The cycloaddition products were directly converted to N-functionalized aminocyclopentanes via solvolysis and N-acylation.

View Article and Find Full Text PDF

To identify pore domain ligands on Kv7.2 potassium ion channels, we compared wild-type (WT) and W236L mutant Kv7.2 channels in a series of assays with previously validated and novel agonist chemotypes.

View Article and Find Full Text PDF

Amines containing bridged bicyclic carbon skeletons are desirable building blocks for medicinal chemistry. Herein, we report the conversion of bicyclo[1.1.

View Article and Find Full Text PDF

Radical aryl migrations are powerful techniques to forge new bonds in aromatic compounds. The growing popularity of photoredox catalysis has led to an influx of novel strategies to initiate and control aryl migration starting from widely available radical precursors. This review encapsulates progress in radical aryl migration enabled by photochemical methods─particularly photoredox catalysis─since 2015.

View Article and Find Full Text PDF

Agrochemical fungicidal leads have been prepared from photochemically derived 1-aminonorbornane building blocks. The unique 1-aminonorbornane core is generated via direct excitation of a Schiff base precursor, leveraging the -centered radical character of the excited state species to facilitate a series of radical reactions that construct the norbornane core. This process requires no exogenous reagents, only solvent and photons; thus, it represents an exceptionally simple and efficient means of generating the key building blocks.

View Article and Find Full Text PDF

The use of radicals as intermediates in total synthesis has evolved since their initial use in the latter half of the twentieth century. Radical generation from metal hydride methodologies has shifted to "greener" techniques including catalytic metal-mediated systems, electrochemical and photoredox-mediated processes. This review will focus on these classical and contemporary methods for radical generation and their applications in recent total syntheses.

View Article and Find Full Text PDF

Phthalimide -oxyl (PINO) is a potent hydrogen atom transfer (HAT) catalyst that can be generated electrochemically from -hydroxyphthalimide (NHPI). However, catalyst decomposition has limited its application. This paper details mechanistic studies of the generation and decomposition of PINO under electrochemical conditions.

View Article and Find Full Text PDF

Lignin provides a potential sustainable source for production of electron-rich aromatic compounds. Recently, electrochemical lignin degradation via an oxidation/reduction sequence under mild conditions has garnered much attention within the lignin community, as electrochemistry simplifies redox reactions and offers an electron source/sink for synthesis without using stoichiometric oxidants or reductants. This paper describes a fundamental approach for the electrochemical fragmentation of the primary connection in native lignin, β-O-4.

View Article and Find Full Text PDF

The implementation of continuous flow technology is critical towards enhancing the application of photochemical reactions for industrial process development. However, there are significant time and resource constraints associated with translating discovery scale vial-based batch reactions to continuous flow scale-up conditions. Herein we report the development of a droplet microfluidic platform, which enables high-throughput reaction discovery in flow to generate pharmaceutically relevant compound libraries.

View Article and Find Full Text PDF

Many promising drug candidates and pharmaceutical compounds fail due to idiosyncratic adverse drug reactions (IADRs), often arising from the formation of reactive metabolites. Among the "structural alerts" responsible, anilines are well-known to undergo deleterious metabolic processing, yet isosteric replacement strategies remain limited. Herein we discuss current art and potential new avenues of saturated isosteres to mitigate aniline-related toxicities.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessioni4omeg2qm3mhl7u66pnn27ka7dn5c2qm): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once