TFEB and TFE3 (TFEB/3), key regulators of lysosomal biogenesis and autophagy, play diverse roles depending on cell type. This study highlights a hitherto unrecognized role of TFEB/3 crucial for peripheral nerve repair. Specifically, they promote the generation of progenitor-like repair Schwann cells after axonal injury.
View Article and Find Full Text PDFThe lasting threat of viral pandemics necessitates the development of tailorable first-response antivirals with specific but adaptive architectures for treatment of novel viral infections. Here, such an antiviral platform has been developed based on a mixture of hetero-peptides self-assembled into functionalized β-sheets capable of specific multivalent binding to viral protein complexes. One domain of each hetero-peptide is designed to specifically bind to certain viral proteins, while another domain self-assembles into fibrils with epitope binding characteristics determined by the types of peptides and their molar fractions.
View Article and Find Full Text PDFMyocardial infarction (MI) is a major cause of morbidity and mortality worldwide, especially in aging and metabolically unhealthy populations. A major target of regenerative tissue engineering is the restoration of viable cardiomyocytes to preserve cardiac function and circumvent the progression to heart failure post-MI. Amelioration of ischemia is a crucial component of such restorative strategies.
View Article and Find Full Text PDFDiabetes Mellitus Type 2 (T2D) is an emerging health burden in the USand worldwide, impacting approximately 15% of Americans. Current front-line therapeutics for T2D patients include sulfonylureas that act to reduce A1C and/or fasting blood glucose levels, or Metformin that antagonizes the action of glucagon to reduce hepatic glucose production. Next generation glucomodulatory therapeutics target members of the high-affinity glucose transporter Sodium-Glucose-Linked-Transporter (SGLT) family.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2024
Interactions between axons and Schwann cells are essential for the acquisition of Schwann cell radial and longitudinal polarity and myelin sheath assembly. In the internode, the largest of these longitudinal domains, axon-Schwann cell interactions are mediated by the Nectin-like (Necl) cell adhesion proteins, also known as SynCAMs or Cadms. In particular, Necl-1/Cadm3 expressed on the axon surface binds to Necl-4/Cadm4 expressed along the adaxonal membrane of myelinating Schwann cells.
View Article and Find Full Text PDFLentiviral transduction is a gene delivery method that provides numerous advantages over direct transfection and traditional retroviral or adenoviral delivery methods. It facilitates for the transduction of primary cells inherently difficult to transfect, delivers constructs of interest to nondividing as well as dividing cells, and permits the long-term expression of sizable DNA inserts (e.g.
View Article and Find Full Text PDFNectin-like 4 (NECL4, CADM4) is a Schwann cell-specific cell adhesion molecule that promotes axo-glial interactions. and studies have shown that NECL4 is necessary for proper peripheral nerve myelination. However, the molecular mechanisms that are regulated by NECL4 and affect peripheral myelination currently remain unclear.
View Article and Find Full Text PDFThe molecular and phenotypic irreversibility of mammalian cell differentiation was a fundamental principle of developmental biology at least until the 1980s, despite numerous reports dating back to the 1950s of the induction of pluripotency in amphibian cells by nuclear transfer (NT). Landmark reports in the 1980s and 1990s in sheep progressively challenged this dogmatic assumption; firstly, embryonic development of reconstructed embryos comprising whole (donor) blastomeres fused to enucleated oocytes, and famously, the cloning of Dolly from a terminally differentiated cell. Thus, the intrinsic ability of oocyte-derived factors to reverse the differentiated phenotype was confirmed.
View Article and Find Full Text PDFMultiple Sclerosis (MS) is an autoimmune, neurodegenerative disease of the central nervous system (CNS) characterized by demyelination through glial cell loss. Current and proposed therapeutic strategies to arrest demyelination and/or promote further remyelination include: (i) modulation of the host immune system; and/or (ii) transplantation of myelinating/stem or progenitor cells to the circulation or sites of injury. However, significant drawbacks are inherent with both approaches.
View Article and Find Full Text PDFExogenous expression of Oct4, Sox2, Klf4, and cMyc forces mammalian somatic cells to adopt molecular and phenotypic characteristics of embryonic stem cells, commencing with the required suppression of lineage-associated genes (e.g., Thy1 in mouse).
View Article and Find Full Text PDFColony-forming units - fibroblast (CFU-Fs), analogous to those giving rise to bone marrow (BM) mesenchymal stem cells (MSCs), are present in many organs, although the relationship between BM and organ-specific CFU-Fs in homeostasis and tissue repair is unknown. Here we describe a population of adult cardiac-resident CFU-Fs (cCFU-Fs) that occupy a perivascular, adventitial niche and show broad trans-germ layer potency in vitro and in vivo. CRE lineage tracing and embryo analysis demonstrated a proepicardial origin for cCFU-Fs.
View Article and Find Full Text PDFProviral expression of early development genes Oct4 and Sox2, in concert with cMyc and Klf4 or Nanog and Lin28, can induce differentiated cells to adopt morphological and functional characteristics of pluripotency indistinguishable from embryonic stem cells. Termed induced pluripotent stem (iPS) cells, in mice the pluripotency of these cells was confirmed by altered gene/surface antigen expression, remodeling of the epigenome, ability to contribute to embryonic lineages following blastocyst injection and commitment to all three germ layers in teratomas and liveborn chimeras. Importantly, in vitro directed differentiation of iPS cells yield cells capable of treating mouse models of humanized disease.
View Article and Find Full Text PDFHeterochromatin protein 1gamma (HP1gamma) is a highly conserved regulator of euchromatic and heterochromatic gene expression. Mammalian HP1gamma is essential for both successful preimplantation embryo development and maintenance of pluripotency in embryonic stem cells in vitro. Here, we describe HP1gamma protein localisation in matured (MII) bovine oocytes and IVF preimplantation embryos at defined developmental stages.
View Article and Find Full Text PDFIn this study we examine whether a somatic cell, once returned to a pluripotent state, gains the ability to reprogram other somatic cells. We reprogrammed mouse embryonic fibroblasts by viral induction of oct4, sox2, c-myc, and klf-4 genes. Upon fusion of the resulting iPS cells with somatic cells harboring an Oct4-GFP transgene we observed, GFP expression along with activation of Oct4 from the somatic genome, expression of key pluripotency genes, and positive immunostaining for Oct4, SSEA-1, and alkaline phosphatase.
View Article and Find Full Text PDFEven though the technique of mammalian SCNT is just over a decade old it has already resulted in numerous significant advances. Despite the recent advances in the reprogramming field, SCNT remains the bench-mark for the generation of both genetically unmodified autologous pluripotent stem cells for transplantation and for the production of cloned animals. In this review we will discuss the pros and cons of SCNT, drawing comparisons with other reprogramming methods.
View Article and Find Full Text PDFThere are five methyl binding domain (MBD) proteins characterized by a methyl CpG-binding domain. Four MBD proteins (MeCP2 and MBDs 1-3) are linked to transcriptional repression and one (MBD4), to DNA repair. During preimplantation development, the embryo undergoes global demethylation following fertilization and selective remethylation following the maternal to zygotic transition (MZT).
View Article and Find Full Text PDFThe Chromobox domain (Cbx) gene family, consisting of Polycomb and Heterochromatin Protein 1 genes, is involved in transcriptional repression, cell cycle regulation and chromatin remodeling. We report the first study of gene expression and protein localization of the Cbx genes in in vitro produced bovine embryos. All but one gene (Cbx6) were expressed.
View Article and Find Full Text PDF