Publications by authors named "Corey E Cruttenden"

This work aims to estimate severe fMRI scanning artifacts in extracellular neural recordings made at ultrahigh magnetic field strengths in order to remove the artifact interferences and uncover the complete neural electrophysiology signal. We build on previous work that used PCA to denoise EEG recorded during fMRI, adapting it to cover the much larger frequency range (1-6000 Hz) of the extracellular field potentials (EFPs) observed by extracellular neural recordings. We examine the singular value decomposition (SVD)-PCA singular value shrinkage (SVS) and compare two shrinkage rules and a sliding template subtraction approach.

View Article and Find Full Text PDF

This paper focuses on the removal of periodic artifacts from neural signals recorded in rats in ultra-high field (UHF) MRI scanners, using a reference free adaptive feedforward method. Recording extracellular neural signals in the UHF environment is motivated by the desire to combine neural recording and UHF functional magnetic resonance imaging (fMRI) to better understand brain function. However, the neural signals are found to have extremely high noise artifacts of a periodic nature due to electromagnetic interference and due to small oscillatory motions.

View Article and Find Full Text PDF

Traditional electrodes used for neural recording and stimulation generate large regions of signal void (no functional MRI signal) when used in ultrahigh field (UHF) MRI scanners. This is a significant disadvantage when simultaneous neural recording/stimulation and fMRI signal acquisition is desired, for example in understanding the functional mechanisms of deep brain stimulation (DBS). In this work, a novel gold-aluminum microwire neural electrode is presented which overcomes this disadvantage.

View Article and Find Full Text PDF

Objective: Removal of common mode noise and artifacts from extracellularly measured action potentials, herein referred to as spikes, recorded with multi-electrode arrays (MEAs) which included severe noise and artifacts generated by an ultrahigh field (UHF) 16.4 Tesla magnetic resonance imaging (MRI) scanner.

Approach: An adaptive virtual referencing (AVR) algorithm is used to remove artifacts and thus enable extraction of neural spike signals from extracellular recordings in anesthetized rat brains.

View Article and Find Full Text PDF

A two-step numerical computation of T* signal weighting maps in gradient echo magnetic resonance imaging in the presence of an object with varied susceptibility property is presented. In the first step, the magnetic scalar potential is computed for an arbitrary 2D magnetic susceptibility distribution using an algebraic solver. The corresponding magnetic field disturbance is computed from the magnetic scalar potential.

View Article and Find Full Text PDF

Objective: Previous animal studies have demonstrated that carbon nanotube (CNT) electrodes provide several advantages of preferential cell growth and better signal-to-noise ratio when interfacing with brain neural tissue. This work explores another advantage of CNT electrodes, namely their MRI compatibility. MRI-compatible neural electrodes that do not produce image artifacts will allow simultaneous co-located functional MRI and neural signal recordings, which will help improve our understanding of the brain.

View Article and Find Full Text PDF