Publications by authors named "Corey Cunningham"

Lactate is the highest turnover circulating metabolite in mammals. While traditionally viewed as a waste product, lactate is an important energy source for many organs, but first must be oxidized to pyruvate for entry into the tricarboxylic acid cycle (TCA cycle). This reaction is thought to occur in the cytosol, with pyruvate subsequently transported into mitochondria via the mitochondrial pyruvate carrier (MPC).

View Article and Find Full Text PDF

Mesenchymal stem cell-derived secretome represents an emerging acellular therapeutic which possess significant opportunity for clinical applications due to its anti-inflammatory, immunomodulatory, and wound healing properties. However, maintaining therapeutic efficacy and ensuring stability of cell-based products is challenging, requiring a robust delivery method. Therefore, we designed a hydrogel-based scaffold loaded with CK Cell Technologies' proprietary Mesenchymal stem cell-secretome for controlled release treatment of acute and chronic wounds.

View Article and Find Full Text PDF

Mitochondrial membrane potential directly powers many critical functions of mitochondria, including ATP production, mitochondrial protein import, and metabolite transport. Its loss is a cardinal feature of aging and mitochondrial diseases, and cells closely monitor membrane potential as an indicator of mitochondrial health. Given its central importance, it is logical that cells would modulate mitochondrial membrane potential in response to demand and environmental cues, but there has been little exploration of this question.

View Article and Find Full Text PDF

The tumor suppressor gene is the second most commonly deleted gene in cancer. Such deletions often include portions of the chromosome 10q23 locus beyond the bounds of itself, which frequently disrupts adjacent genes. Coincidental loss of -adjacent genes might impose vulnerabilities that could either affect patient outcome basally or be exploited therapeutically.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on how pyruvate and glutamine are used by diffuse large B cell lymphomas (DLBCLs) for energy and growth, particularly emphasizing mitochondrial pyruvate carrier (MPC) involvement.
  • It was discovered that DLBCLs prefer glutamine over pyruvate as a carbon source for cellular processes, which is contrary to other cell types.
  • MPC inhibition reduces DLBCL growth in environments similar to extracellular matrix (ECM), highlighting the importance of metabolic adaptations in different environments for lymphoma cell proliferation.
View Article and Find Full Text PDF

Mesenchymal stem cells derived from adipose tissue (ADMSCs) are being increasingly considered in regenerative medicine-based clinical applications. Apart from possessing therapeutic applications themselves, ADMSCs also secrete a myriad of soluble factors which are promising candidates for treating several degenerative diseases such as osteoarthritis and neurodegenerative diseases, wound repair as well as for cosmeceutical purposes. In our research study, we successfully isolated ADMSCs in-house, now called CKC-Endeavour-1 from the lipoaspirate sample of a patient who underwent liposuction.

View Article and Find Full Text PDF

Objective: To determine the rate of under-reporting of concussion and its symptoms in elite rugby league players in Australia.

Methods: The study was conducted in the preseason of the 2020 National Rugby League (NRL) competition.A total of 151 male, NRL club contracted rugby league players across three professional clubs participated.

View Article and Find Full Text PDF

The metabolic rewiring of cardiomyocytes is a widely accepted hallmark of heart failure (HF). These metabolic changes include a decrease in mitochondrial pyruvate oxidation and an increased export of lactate. We identify the mitochondrial pyruvate carrier (MPC) and the cellular lactate exporter monocarboxylate transporter 4 (MCT4) as pivotal nodes in this metabolic axis.

View Article and Find Full Text PDF

Epidemiological studies of injury in elite and recreational golfers have lacked consistency in methods and definitions employed and this limits comparison of results across studies. In their sports-generic statement, the Consensus Group recruited by the IOC (2020) called for sport-specific consensus statements. On invitation by International Golf Federation, a group of international experts in sport and exercise medicine, golf research and sports injury/illness epidemiology was selected to prepare a golf-specific consensus statement.

View Article and Find Full Text PDF

The metabolic compartmentalization enabled by mitochondria is key feature of many cellular processes such as energy conversion to ATP production, redox balance, and the biosynthesis of heme, urea, nucleotides, lipids, and others. For a majority of these functions, metabolites need to be transported across the impermeable inner mitochondrial membrane by dedicated carrier proteins. Here, we examine the substrates, structural features, and human health implications of four mitochondrial metabolite carrier families: the SLC25A family, the mitochondrial ABCB transporters, the mitochondrial pyruvate carrier (MPC), and the sideroflexin proteins.

View Article and Find Full Text PDF

In the diapered area, the continuous exposure to excess moisture and irritants from urine and feces weakens the stratum corneum, making the skin more susceptible to irritation. The use of wet wipes for infants (baby wipes) is a common practice to clean skin after urine or a bowel movement, and this practice even extends to cleaning the hands and face, resulting in repeated daily use. Therefore, ensuring that baby wipes contain ingredients that are safe and mild on skin is important to help minimize skin irritation and discomfort.

View Article and Find Full Text PDF

Insulin gene coding sequence mutations are known to cause mutant INS-gene-induced diabetes of youth (MIDY), yet the cellular pathways needed to prevent misfolded proinsulin accumulation remain incompletely understood. Here, we report that Akita mutant proinsulin forms detergent-insoluble aggregates that entrap wild-type (WT) proinsulin in the endoplasmic reticulum (ER), thereby blocking insulin production. Two distinct quality-control mechanisms operate together to combat this insult: the ER luminal chaperone Grp170 prevents proinsulin aggregation, while the ER membrane morphogenic protein reticulon-3 (RTN3) disposes of aggregates via ER-coupled autophagy (ER-phagy).

View Article and Find Full Text PDF

The skin of premature infants is underdeveloped rendering it more prone to break down and irritation. Therefore, special care is needed to protect premature skin and ensure it is not adversely affected. Many health care professionals advise using just water and cloth to clean diapered skin after a bowel movement despite evidence that shows improved infant skin health with the use of modern appropriately formulated baby wipes.

View Article and Find Full Text PDF

The endoplasmic reticulum (ER) is broadly distributed throughout the cytoplasm of pancreatic beta cells, and this is where all proinsulin is initially made. Healthy beta cells can synthesize 6000 proinsulin molecules per second. Ordinarily, nascent proinsulin entering the ER rapidly folds via the formation of three evolutionarily conserved disulfide bonds (B7-A7, B19-A20, and A6-A11).

View Article and Find Full Text PDF

In heterozygous patients with a diabetic syndrome called mutant gene-induced diabetes of youth (MIDY), there is decreased insulin secretion when mutant proinsulin expression prevents wild-type (WT) proinsulin from exiting the endoplasmic reticulum (ER), which is essential for insulin production. Our previous results revealed that mutant proinsulin is triaged by ER-associated degradation (ERAD). We now find that the ER chaperone Grp170 participates in the degradation process by shifting proinsulin from high-molecular weight (MW) complexes toward smaller oligomeric species that are competent to undergo ERAD.

View Article and Find Full Text PDF

Viruses subvert the functions of their host cells to replicate and form new viral progeny. The endoplasmic reticulum (ER) has been identified as a central organelle that governs the intracellular interplay between viruses and hosts. In this Review, we analyse how viruses from vastly different families converge on this unique intracellular organelle during infection, co-opting some of the endogenous functions of the ER to promote distinct steps of the viral life cycle from entry and replication to assembly and egress.

View Article and Find Full Text PDF

In mutant INS gene-induced diabetes of youth (MIDY), characterized by insulin deficiency, MIDY proinsulin mutants misfold and fail to exit the endoplasmic reticulum (ER). Moreover, these mutants bind and block ER exit of wild-type (WT) proinsulin, inhibiting insulin production. The ultimate fate of ER-entrapped MIDY mutants is unclear, but previous studies implicated ER-associated degradation (ERAD), a pathway that retrotranslocates misfolded ER proteins to the cytosol for proteasomal degradation.

View Article and Find Full Text PDF

Patients with spinal cord injuries are at increased risk of developing symptomatic urinary tract infections. Current evidence-based knowledge regarding prevention and treatment of urinary tract infection in the spinal cord injured population is limited. There are currently no urinary tract infection prevention and management guidelines specifically targeted towards elite spinal cord injured athletes.

View Article and Find Full Text PDF

TREX-2 is a five protein complex, conserved from yeast to humans, involved in linking mRNA transcription and export. The centrin 2 subunit of TREX-2 is also a component of the centrosome and is additionally involved in a distinctly different process of nuclear protein export. While centrin 2 is a known multifunctional protein, the roles of other human TREX-2 complex proteins other than mRNA export are not known.

View Article and Find Full Text PDF

Copper phenanthrolines are attractive as potential photosensitizers because of the ready availability of the metal, but efficient nonradiative decay including a solvent-induced quenching phenomenon ordinarily limits their utility. However, the present studies show that the addition of methyl substituents in the 3,8-positions of 1,10-phenanthroline can enhance the protective effect that bulky groups in the 2,9-positions have on the reactive charge-transfer excited state of a bis-ligand copper(I) derivative. Thus, the photoexcited Cu(dbtmp)(2)(+) complex has a lifetime of 920 ns in dichloromethane, whereas the parent complex without the methyl substituents has a lifetime of only 150 ns under the same conditions (dbtmp = 2,9-di-n-butyl-3,4,7,8-tetramethyl-1,10-phenanthroline).

View Article and Find Full Text PDF