Publications by authors named "Corey B Meyer"

Introduction: During the coronavirus disease 2019 (COVID-19) vaccination campaign, non-English-communicating individuals have faced inequities in access to resources for vaccine education and uptake. We characterized the language translation status of states' COVID-19 vaccine websites to inform discussion on the sufficiency of translated information and strategies for expanding the availability of multilingual vaccine information.

Methods: We identified the primary COVID-19 vaccine website for all 50 states, the District of Columbia, and the federal government ("jurisdictions") and determined the languages into which information about obtaining the vaccine (access) and vaccine safety and efficacy had been translated, as of October 2021.

View Article and Find Full Text PDF

Understanding the overall biosecurity and biodefense policy landscape, the relationships between policies and their effects on each other, and the mechanisms for leveraging advances in science and technology to enhance defensive capabilities is crucial for ensuring that policy strategies address long-standing gaps and challenges. To date, policy analyses have been conducted primarily on single issues, which limits analyses of broader effects of policies, particularly after implementation. Here we describe the first-ever systems-based analysis of the US biosecurity and biodefense policy landscape to analyze functional relationships between policies, including examination of the unintended positive or negative consequences of policy actions.

View Article and Find Full Text PDF

Autophagy has emerged as an important antimicrobial host defense mechanism that not only orchestrates the systemic immune response, but also functions in a cell autonomous manner to directly eliminate invading pathogens. Pathogenic bacteria such as Salmonella have evolved adaptations to protect themselves from autophagic elimination. Here we show that signaling through the non-receptor tyrosine kinase focal adhesion kinase (FAK) is actively manipulated by the Salmonella SPI-2 system in macrophages to promote intracellular survival.

View Article and Find Full Text PDF

Background: Early, sorting endosomes are a major crossroad of membrane traffic, at the intersection of the endocytic and exocytic pathways. The sorting of endosomal cargo for delivery to different subcellular destinations is mediated by a number of distinct coat protein complexes, including adaptor protein 1 (AP-1), AP-3, and Golgi-localized, gamma adaptin ear-containing, Arf-binding (GGAs) protein. Ultrastructural studies suggest that these coats assemble onto tubular subdomains of the endosomal membrane, but the mechanisms of coat recruitment and assembly at this site remain poorly understood.

View Article and Find Full Text PDF

Eukaryotic chromosomes segregate by attaching to microtubules of the mitotic spindle through a chromosomal microtubule binding site called the kinetochore. Kinetochores assemble on a specialized chromosomal locus termed the centromere, which is characterized by the replacement of histone H3 in centromeric nucleosomes with the essential histone H3 variant CENP-A (centromere protein A). Understanding how CENP-A chromatin is assembled and maintained is central to understanding chromosome segregation mechanisms.

View Article and Find Full Text PDF