Publications by authors named "Cores A"

Parkinson's disease (PD), the second most common neurodegenerative disorder, affects around 10 million people worldwide. It is a multifactorial disease marked by dopaminergic neuron loss with oxidative stress (OS) and neuroinflammation as key pathological drivers. Current treatments focus on dopamine replacement and are symptomatic, underscoring the urgent need for disease-modifying therapies.

View Article and Find Full Text PDF

Catalytic C-H functionalization has provided new opportunities to access novel organic molecules more sustainably and efficiently. However, these procedures typically rely on precious metals or complex organic catalysts as well as on hazardous solvents or reaction conditions. Herein, a pioneering methodology for direct C-C bond formation enabled by Ligand-to-Metal Charge Transfer (LMCT) and mediated by UV irradiation has been developed using Deep Eutectic Solvents (DESs) as sustainable reaction media.

View Article and Find Full Text PDF

Quinones can in principle be viewed as a double-edged sword in the treatment of neurodegenerative diseases, since they are often cytoprotective but can also be cytotoxic due to covalent and redox modification of biomolecules. Nevertheless, low doses of moderately electrophilic quinones are generally cytoprotective, mainly due to their ability to activate the Keap1/Nrf2 pathway and thus induce the expression of detoxifying enzymes. Some natural quinones have relevant roles in important physiological processes.

View Article and Find Full Text PDF

Multi-target drug discovery is one of the most active fields in the search for new drugs against Alzheimer's disease (AD). This is because the complexity of AD pathological network might be adequately tackled by multi-target-directed ligands (MTDLs) aimed at modulating simultaneously multiple targets of such a network. In a continuation of our efforts to develop MTDLs for AD, we have been focusing on the molecular hybridization of the acetylcholinesterase inhibitor tacrine with the aim of expanding its anti-AD profile.

View Article and Find Full Text PDF

Prion diseases are characterized by the self-assembly of pathogenic misfolded scrapie isoforms (PrP) of the cellular prion protein (PrP). In an effort to achieve a theranostic profile, symmetrical bifunctional carbazole derivatives were designed as fluorescent rigid analogues of GN8, a pharmacological chaperone that stabilizes the native PrP conformation and prevents its pathogenic conversion. A focused library was synthesized via a four-step route, and a representative member was confirmed to have native fluorescence, including a band in the near-infrared region.

View Article and Find Full Text PDF

Multicomponent reactions 9i.e., those that engage three or more starting materials to form a product that contains significant fragments of all of them), have been widely employed in the construction of compound libraries, especially in the context of diversity-oriented synthesis.

View Article and Find Full Text PDF

The environmental presence of anions of natural origin or anthropogenic origin is gradually increasing. As a tool to tackle this problem, carbazole derivatives are an attractive gateway to the development of luminescent chemosensors. Considering the different mechanisms proposed for anion recognition, the fluorescence properties and anion-binding response of several newly synthesised carbazole derivatives were studied.

View Article and Find Full Text PDF

Hybrids based on an aza-analogue of CGP37157, a mitochondrial Na/Ca exchanger antagonist, and lipoic acid were obtained in order to combine in a single molecule the antioxidant and NRF2 induction properties of lipoic acid and the neuroprotective activity of CGP37157. The four possible enantiomers of the hybrid structure were synthesized by using as the key step a fully diastereoselective reduction induced by Ellman's chiral auxiliary. After computational druggability studies that predicted good ADME profiles and blood-brain permeation for all compounds, the DPPH assay showed moderate oxidant scavenger capacity.

View Article and Find Full Text PDF

Curcumin shows a broad spectrum of activities of relevance in the treatment of Alzheimer's disease (AD); however, it is poorly absorbed and is also chemically and metabolically unstable, leading to a very low oral bioavailability. A small library of hybrid compounds designed as curcumin analogues and incorporating the key structural fragment of piperlongumine, a natural neuroinflammation inhibitor, were synthesized by a two-step route that combines a three-component reaction between primary amines, β-ketoesters and α-haloesters and a base-promoted acylation with cinnamoyl chlorides. These compounds were predicted to have good oral absorption and CNS permeation, had good scavenging properties in the in vitro DPPH experiment and in a cellular assay based on the oxidation of dichlorofluorescin to a fluorescent species.

View Article and Find Full Text PDF

The use of cyclodextrins as drug nano-carrier systems for drug delivery is gaining importance in the pharmaceutical industry due to the interesting pharmacokinetic properties of the resulting inclusion complexes. In the present work, complexes of the anti-cancer alkaloids camptothecin and luotonin A have been prepared with β-cyclodextrin and hydroxypropyl-β-cyclodextrin. These cyclodextrin complexes were characterized by nuclear magnetic resonance spectroscopy (NMR).

View Article and Find Full Text PDF

Synaptic spine morphology is controlled by the activity of Rac1, Cdc42 and RhoA, which need to be finely balanced, and in particular RhoA/ROCK prevents the formation of new protrusions by stabilizing actin formation. These processes are crucial to the maturation process, slowing the de novo generation of new spines. The RhoA/ROCK also influences plasticity processes, and selective modulation by ROCK1 of MLC-dependent actin dynamics leads to neurite retraction, but not to spine retraction.

View Article and Find Full Text PDF

Oxidative stress is crucial to the outbreak and advancement of neurodegenerative diseases and is a common factor to many of them. We describe the synthesis of a library of derivatives of the 4-arylmethylen-2-pyrrolin-5-one framework by sequential application of a three-component reaction of primary amines, β-dicarbonyl compounds, and α-haloketones and a Knoevenagel condensation. These compounds can be viewed as cyclic amides of caffeic and ferulic acids, and are also structurally related to the bisavenanthramide family of natural antioxidants.

View Article and Find Full Text PDF

A step- and atom-economical protocol allowing the synthesis of 1,4-diazepanes and also tetrahydro- and decahydro-1,5-benzodiazepines is described. The method proceeds from very simple starting materials such as 1,2-diamines and alkyl 3-oxohex-5-enoates and can be performed under solvent-free conditions in many instances. The key event of this process was the generation of an aza-Nazarov reagent and its subsequent intramolecular aza-Michael cyclization.

View Article and Find Full Text PDF

NRF2 acts by controlling gene expression, being the master regulator of the Phase II antioxidant response, and also being key to the control of neuroinflammation. NRF2 activity is regulated at several levels, including protein degradation by the proteasome, transcription, and post-transcription. The purpose of this review is to offer a concise and critical overview of the main mechanisms of NRF2 regulation and their actual or potential use as targets for the treatment of neurodegenerative diseases.

View Article and Find Full Text PDF

The molybdenum cofactor deficiency is an autosomal recessive disease, characterized by rapidly progressive and severe neurological damage that mimics a hypoxic-ischemic encephalopathy due to the accumulation of toxic metabolites that cause rapid neurodegeneration after the delivery. It is eventually lethal, in a similar way to the rare isolated sulfite oxidase deficiency. This serious pathology usually causes death in the immediate neonatal period in the more severe variants.

View Article and Find Full Text PDF

Two multitarget hybrids, derived from an aza-analogue of CGP37157, a mitochondrial Na /Ca exchanger antagonist, and lipoic acid were designed in order to combine in a single molecule the antioxidant and Nrf2 induction properties of lipoic acid and the neuroprotective activity of CGP37157. The hybrid derivatives showed Nrf2 induction and radical scavenging properties, leading to a good neuroprotective profile against oxidative stress, together with an interesting antineuroinflammatory activity. The results obtained show differences in activity depending on the configuration of the chiral center of LA.

View Article and Find Full Text PDF

The formation of neurofibrillary tangles (NFTs), oxidative stress and neuroinflammation have emerged as key targets for the treatment of Alzheimer's disease (AD), the most prevalent neurodegenerative disorder. These pathological hallmarks are closely related to the over-activity of the enzyme GSK3β and the downregulation of the defense pathway Nrf2-EpRE observed in AD patients. Herein, we report the synthesis and pharmacological evaluation of a new family of multitarget 2,4-dihydropyrano[2,3-c]pyrazoles as dual GSK3β inhibitors and Nrf2 inducers.

View Article and Find Full Text PDF

As enabling technology, the development and application of multicomponent reactions (MCRs) are now an integral part of the work of any major medical research unit. Targeted MCR approaches focused on specific antimitotic pathways afford new solutions for the medicinal chemistry of the XXI century. In this review, the contribution of these procedures to the discovery of antimitotic drugs that are currently in clinical trials or already in the market is discussed.

View Article and Find Full Text PDF

An integrated multidisciplinary approach that combined structure-based drug design, multicomponent reaction synthetic approaches and functional characterization in enzymatic and cell assays led to the discovery of new kinesin spindle protein (KSP) inhibitors with antiproliferative activity. A focused library of new benzimidazoles obtained by a Ugi+Boc removal/cyclization reaction sequence generated low-micromolar-range KSP inhibitors as promising anticancer prototypes. The design and functional studies of the new chemotypes were assessed by computational modeling and molecular biology techniques.

View Article and Find Full Text PDF