Publications by authors named "Corentin Le Magueresse"

Many psychiatric diseases have been associated with serotonin (5-HT) neuron dysfunction. The firing of 5-HT neurons is known to be under 5-HT receptor-mediated autoinhibition, but functional consequences of coexpressed receptors are unknown. Using co-immunoprecipitation, BRET, confocal, and super-resolution microscopy in hippocampal and 5-HT neurons, we present evidence that 5-HT and 5-HT receptors can form heterodimers and co-cluster at the plasma membrane of dendrites.

View Article and Find Full Text PDF

The proper maturation of emotional and sensory circuits requires fine-tuning of serotonin (5-HT) level during early postnatal development. Consistently, dysfunctions of the serotonergic system have been associated with neurodevelopmental psychiatric diseases, including autism spectrum disorders (ASD). However, the mechanisms underlying the developmental effects of 5-HT remain partially unknown, one obstacle being the action of 5-HT on different cell types.

View Article and Find Full Text PDF

Over the last decade, a large variety of alterations of the gene, encoding Caspr2, have been identified in several neuronal disorders, including neurodevelopmental disorders and peripheral neuropathies. Some of these alterations are homozygous but most are heterozygous, and one of the current challenges is to estimate to what extent they could affect the functions of Caspr2 and contribute to the development of these pathologies. Notably, it is not known whether the disruption of a single allele could be sufficient to perturb the functions of Caspr2.

View Article and Find Full Text PDF

Accumulating evidence supports immune involvement in the pathogenesis of schizophrenia, a severe psychiatric disorder. In particular, high expression variants of C4, a gene of the innate immune complement system, were shown to confer susceptibility to schizophrenia. However, how elevated C4 expression may impact brain circuits remains largely unknown.

View Article and Find Full Text PDF

A rare mutation affecting the Forkhead-box protein P2 (FOXP2) transcription factor causes a severe monogenic speech and language disorder. Mice carrying an identical point mutation to that observed in affected patients (Foxp2 mice) display motor deficits and impaired synaptic plasticity in the striatum. However, the consequences of the mutation on neuronal function, in particular in the cerebral cortex, remain little studied.

View Article and Find Full Text PDF

The complement system consists of more than 30 proteins that have long been known to participate to the immune defence against pathogens and to the removal of damaged cells. Their role, however, extends beyond immunity and clearance of altered "self" components in the periphery. In particular, complement proteins can be induced by all cell types in the brain.

View Article and Find Full Text PDF

Exposure to stress during early life (infancy/childhood) has long-term effects on the structure and function of the prefrontal cortex (PFC), and increases the risk for adult depression and anxiety disorders. However, little is known about the molecular and cellular mechanisms of these effects. Here, we focused on changes induced by chronic maternal separation during the first 2 weeks of postnatal life.

View Article and Find Full Text PDF

Neural activity is crucial for the refinement of neuronal connections during development, but the contribution of synaptic release mechanisms is not known. In the mammalian retina, spontaneous neural activity controls the refinement of retinal projections to the dorsal lateral geniculate nucleus (dLGN) and the superior colliculus (SC) to form appropriate topographic and eye-specific maps. To evaluate the role of synaptic release, the rab-interacting molecules (RIMs), a family of active zone proteins that play a central role in calcium-triggered release, were conditionally ablated in a subset of retinal ganglion cells (RGCs).

View Article and Find Full Text PDF

Gap junctions are present in many cell types throughout the animal kingdom and allow fast intercellular electrical and chemical communication between neighboring cells. Connexin-36 (Cx36), the major neuronal gap junction protein, synchronizes cellular activity in the brain, but also in other organs. Here we identify a sex-specific role for Cx36 within the hypothalamic-pituitary-gonadal (HPG) axis at the level of the anterior pituitary gland (AP).

View Article and Find Full Text PDF

Postnatal neurogenesis in mammals is confined to restricted brain regions, including the subventricular zone (SVZ). In rodents, the SVZ is a lifelong source of new neurons fated to migrate to the olfactory bulb (OB), where the majority become GABAergic interneurons. The plastic capacity of neonatal and adult SVZ stem/progenitor cells is still largely unknown.

View Article and Find Full Text PDF

From early embryonic development to adulthood, GABA release participates in the construction of the mammalian cerebral cortex. The maturation of GABAergic neurotransmission is a protracted process which takes place in discrete steps and results from the dynamic interaction between developmentally directed gene expression and brain activity. During the course of development, GABAergic interneurons contribute to key aspects of the functional maturation of the cortex in different ways, from exerting a trophic role to pacing immature neural networks.

View Article and Find Full Text PDF
Article Synopsis
  • Connexins play a significant role in regulating cell migration and proliferation during brain development, but their postnatal functions are not well understood.
  • Overexpression of connexin 45 (Cx45) in postnatal precursor cells increased their proliferation, while its deletion reduced proliferation.
  • Cx45 promotes cell cycle reentry through ATP signaling, which involves intracellular calcium and ERK1/2 signaling pathways.
View Article and Find Full Text PDF

Reduction of excitatory currents onto GABAergic interneurons in the forebrain results in impaired spatial working memory and altered oscillatory network patterns in the hippocampus. Whether this phenotype is caused by an alteration in hippocampal interneurons is not known because most studies employed genetic manipulations affecting several brain regions. Here we performed viral injections in genetically modified mice to ablate the GluA4 subunit of the AMPA receptor in the hippocampus (GluA4(HC-/-) mice), thereby selectively reducing AMPA receptor-mediated currents onto a subgroup of hippocampal interneurons expressing GluA4.

View Article and Find Full Text PDF

The subventricular zone (SVZ) of the lateral ventricles is the largest neurogenic niche of the postnatal brain. New SVZ-generated neurons migrate via the rostral migratory stream to the olfactory bulb (OB) where they functionally integrate into preexisting neuronal circuits. Nonsynaptic GABA signaling was previously shown to inhibit SVZ-derived neurogenesis.

View Article and Find Full Text PDF

Neurons continue to be generated in the subventricular zone (SVZ) throughout postnatal development and adulthood in rodents. Whereas in adults, virtually all neuroblasts migrate tangentially to the olfactory bulb via the rostral migratory stream (RMS), in neonates, a substantial fraction migrate radially through the corpus callosum (CC) to the cortex. Mechanisms of radial cortical migration have remained unknown.

View Article and Find Full Text PDF

GABAergic interneurons of the mouse cortex are generated embryonically in the ventral telencephalon. Recent evidence, however, indicated that a subset of cortical cells expressing interneuronal markers originate in the neonatal subventricular zone. This has raised interest in the functional development and incorporation of these postnatally generated cells into cortical circuits.

View Article and Find Full Text PDF

Nicotine acetylcholine (ACh) receptors (nAChRs) are ligand-gated ion channels that are widely expressed throughout the central nervous system. It is well established that presynaptic, alpha7-containing nAChRs modulate glutamate release in several brain areas, and that this modulation requires extracellular calcium. However, the intracellular mechanisms consecutive to nAChR opening are unclear.

View Article and Find Full Text PDF

The hippocampus, a key structure in learning and memory processes, receives a powerful cholinergic innervation from the septum and contains nicotinic acetylcholine receptors (nAChRs). Early in postnatal development, activation of nAChRs by nicotine or endogenous acetylcholine contributes to enhance synaptic signalling. Here, the patch-clamp technique was used to assess the contribution of alpha7 and beta2-containing (alpha7* and beta2*) nAChRs to nicotine-elicited modulation of GABAergic and glutamatergic activity at the network and single-cell level in the immature hippocampus of wild-type (WT), alpha7-/- and beta2-/- mice.

View Article and Find Full Text PDF

Neuronal nicotinic acetylcholine receptors (nAChRs) are widely distributed within the brain where they contribute to the regulation of higher cognitive functions. The loss of the cholinergic function in Alzheimer's disease patients, along with the well-known memory enhancing effect of nicotine, emphasizes the role of cholinergic signalling in memory functions. The hippocampus, a key structure in learning and memory, is endowed with nAChRs localized at pre- and postsynaptic levels.

View Article and Find Full Text PDF

In the hippocampus at birth, most glutamatergic synapses are immature and functionally "silent" either because the neurotransmitter is released in insufficient amount to activate low-affinity alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors or because the appropriate receptor system is missing or nonfunctional. Here we show that, in the newborn rat, a brief application of nicotine at immature Schaffer collateral-CA1 connections strongly enhances neurotransmitter release and converts presynaptically silent synapses into conductive ones. This effect is persistent and can be mimicked by endogenous acetylcholine released from cholinergic fibers.

View Article and Find Full Text PDF