Publications by authors named "Cordula Stefanovic"

Article Synopsis
  • - Understanding the S-layer anchoring in bacteria involves non-covalent interactions between S-layer domains and secondary cell wall polymers (SCWPs), with specific roles for ManNAc ligands and the MnaA enzyme in SCWP biosynthesis.
  • - Research focused on producing MnaA and its variants to analyze their kinetic properties, test allosteric activation by UDP-GlcNAc, and explore the effects of tunicamycin as a potential inhibitor using crystal structure analysis and molecular docking.
  • - The study revealed the crystal structure of MnaA and confirmed the conservation of key residues, finding that UDP-GlcNAc boosts reaction rates but isn't essential for its function, while tunicamycin doesn't
View Article and Find Full Text PDF

Pyruvylation is a biologically versatile but mechanistically unexplored saccharide modification. 4,6-Ketal pyruvylated N-acetylmannosamine within bacterial secondary cell wall polymers serves as a cell wall anchoring epitope for proteins possessing a terminal S-layer homology domain trimer. The pyruvyltransferase CsaB from Paenibacillus alvei served as a model to investigate the structural basis of the pyruvyltransfer reaction by a combination of molecular modelling and site-directed mutagenesis together with an enzyme assay using phosphoenolpyruvate (PEP; donor) and synthetic β-D-ManNAc-(1 → 4)-α-D-GlcNAc-diphosphoryl-11-phenoxyundecyl (acceptor).

View Article and Find Full Text PDF

Ketalpyruvyltransferases belong to a widespread but little investigated class of enzymes, which utilise phosphoenolpyruvate (PEP) for the pyruvylation of saccharides. Pyruvylated saccharides play pivotal biological roles, ranging from protein binding to virulence. Limiting factors for the characterisation of ketalpyruvyltransferases are the availability of cognate acceptor substrates and a straightforward enzyme assay.

View Article and Find Full Text PDF

The cell walls of Gram-positive bacteria contain a variety of glycopolymers (CWGPs), a significant proportion of which are covalently linked to the peptidoglycan (PGN) scaffolding structure. Prominent CWGPs include wall teichoic acids of , streptococcal capsules, mycobacterial arabinogalactan, and rhamnose-containing polysaccharides of lactic acid bacteria. CWGPs serve important roles in bacterial cellular functions, morphology, and virulence.

View Article and Find Full Text PDF

Glycoconjugates are the most diverse biomolecules of life. Mostly located at the cell surface, they translate into cell-specific "barcodes" and offer a vast repertoire of functions, including support of cellular physiology, lifestyle, and pathogenicity. Functions can be fine-tuned by non-carbohydrate modifications on the constituting monosaccharides.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionmevjbaeesimp763atfo2g1bhtu6mrlhb): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once