Front Bioeng Biotechnol
October 2023
After the development of 3D cell culture methods in the middle of the last century and the plethora of data generated with this culture configuration up to date, it could be shown that a three-dimensional arrangement of cells in most of the cases leads to a more physiological behavior of the generated tissue. However, a major determinant for an organotypic function, namely, the dissolved oxygen concentration in the used -system, has been neglected in most of the studies. This is due to the fact that the oxygen measurement in the beginning was simply not feasible and, if so, disturbed the measurement and/or the -system itself.
View Article and Find Full Text PDFCEST-MRI of the rNOE signal has been demonstrated in vitro to be closely linked to the protein conformational state. As the detectability of denaturation and aggregation processes on a physiologically relevant scale in living organisms has yet to be verified, the aim of this study was to perform heat-shock experiments with living cells to monitor the cellular heat-shock response of the rNOE CEST signal. Cancer cells (HepG2) were dynamically investigated after a mild, non-lethal heat-shock of 42 °C for 20 min using an MR-compatible bioreactor system at 9.
View Article and Find Full Text PDFDespite huge advances in recent years, the interaction between hematopoietic stem and progenitor cells (HSPCs) and their niches in the bone marrow is still far from being fully understood. One reason is that hematopoiesis is a multi-step maturation process leading to HSPC heterogeneity. Subpopulations of HSPCs can be identified by clonogenic assays or in serial transplantation experiments in mice following sublethal irradiation, but it is very complex to reproduce or even maintain stem cell plasticity in vitro.
View Article and Find Full Text PDF(1) Background: We describe a 4D cell culture platform with which we tried to detect and to characterize migration dynamics of single hematopoietic stem cells in polymer film microcavity arrays integrated into a microtiter plate. (2) Methods: The system was set up with CD34-expressing KG-1a cells as a surrogate for hematopoietic stem cells. We then evaluated the system as an artificial hematopoietic stem cell niche model comprised of a co-culture of human hematopoietic stem cells from cord blood (cord blood CD34 cells, hHSCs) and human mesenchymal stromal cells (hMSCs) from bone marrow over a period of 21 days.
View Article and Find Full Text PDFBackground: Triple-quantum (TQ) filtered sequences have become more popular in sodium MR due to the increased usage of scanners with field strengths exceeding 3T. Disagreement as to whether TQ signal can provide separation of intra- and extracellular compartments persists.
Purpose: To provide insight into TQ signal behavior on a cellular level.
The aim of this study was to observe the effects of strophanthin induced inhibition of the Na-/K-ATPase in liver cells using a magnetic resonance (MR) compatible bioreactor. A microcavity array with a high density three-dimensional cell culture served as a functional magnetic resonance imaging (MRI) phantom for sodium multi quantum (MQ) spectroscopy. Direct contrast enhanced (DCE) MRI revealed the homogenous distribution of biochemical substances inside the bioreactor.
View Article and Find Full Text PDFIn previous studies human mesenchymal stromal cells (MSCs) maintained the "stemness" of human hematopoietic progenitor cells (HPCs) through direct cell-cell contact in two-dimensional co-culture systems. We establish a three-dimensional (3D) co-culture system based on a custom-made chip, the 3(D)-KITChip, as an in vitro model system of the human hematopoietic stem cell niche. This array of up to 625 microcavities, with 300 μm size in each orientation, was inserted into a microfluidic bioreactor.
View Article and Find Full Text PDFOne of the main challenges in drug development is the prediction of in vivo toxicity based on in vitro data. The standard cultivation system for primary human hepatocytes is based on monolayer cultures, even if it is known that these conditions result in a loss of hepatocyte morphology and of liver-specific functions, such as drug-metabolizing enzymes and transporters. As it has been demonstrated that hepatocytes embedded between two sheets of collagen maintain their function, various hydrogels and scaffolds for the 3D cultivation of hepatocytes have been developed.
View Article and Find Full Text PDF