Publications by authors named "Cordt Zollfrank"

Fluorescent proteins (FPs) are heralded as a paradigm of sustainable materials for photonics/optoelectronics. However, their stabilization under non-physiological environments and/or harsh operation conditions is the major challenge. Among the FP-stabilization methods, classical sol-gel is the most effective, but less versatile, as most of the proteins/enzymes are easily degraded due to the need of multi-step processes, surfactants, and mixed water/organic solvents in extreme pH.

View Article and Find Full Text PDF

Replacing petroleum-based polymers with biopolymers such as polysaccharides is essential for protecting our environment by saving fossil resources. A research field that can benefit from the application of more sustainable and renewable materials is photochemistry. Therefore, cellulose-based photoresists that could be photocrosslinked via UV irradiation (λ = 254 nm and λ = 365 nm) were developed.

View Article and Find Full Text PDF

Materials derived from renewable resources have great potential to replace fossil-based plastics in biomedical applications. In this study, the synthesis of cellulose-based photoresists by esterification with methacrylic acid anhydride and sorbic acid was investigated. These resists polymerize under UV irradiation in the range of λ = 254 nm to 365 nm, with or, in the case of the sorbic acid derivative, without using an additional photoinitiator.

View Article and Find Full Text PDF

Biodegradation rates and mechanical properties of poly(3-hydroxybutyrate) (PHB) composites with green algae and cyanobacteria were investigated for the first time. To the authors knowledge, the addition of microbial biomass led to the biggest observed effect on biodegradation so far. The composites with microbial biomass showed an acceleration of the biodegradation rate and a higher cumulative biodegradation within 132 days compared to PHB or the biomass alone.

View Article and Find Full Text PDF

Bacterial cellulose (BC) represents a renewable biomaterial with unique properties promising for biotechnology and biomedicine. Komagataeibacter hansenii ATCC 53,582 is a well-characterized high-yield producer of BC used in the industry. Its genome encodes three distinct cellulose synthases (CS), bcsAB1, bcsAB2, and bcsAB3, which together with genes for accessory proteins are organized in operons of different complexity.

View Article and Find Full Text PDF

The use of biodegradable materials such as cellulose and polyesters can be extended through the combination, as well as modification, of these biopolymers. By controlling the molecular structure and composition of copolymers of these components, it should also be possible to tailor their material properties. We hereby report on the synthesis and characterization of cellulose-based graft copolymers with a precise molecular composition and copolymer architecture.

View Article and Find Full Text PDF

The fabrication of green optical waveguides based on cellulose and spider silk might allow the processing of novel biocompatible materials. Regenerated cellulose fibers are used as the core and recombinantly produced spider silk proteins eADF4(C16) as the cladding material. A detected delamination between core and cladding could be circumvented by using a modified spider silk protein with a cellulose-binding domain-enduring permanent adhesion between the cellulose core and the spider silk cladding.

View Article and Find Full Text PDF

Cotton-based raw paper, made of 100% cellulose, is used to make humidity-sensing, cottonid for bio-architecture applications. Despite its renewability and excellent mechanical properties, it is inherently flammable. In an effort to reduce its flammability, thin films of fully renewable and environmentally benign polyelectrolytes, chitosan (CH) and phytic acid (PA), were deposited on raw paper via layer-by-layer (LbL) assembly.

View Article and Find Full Text PDF

All-glucose block copolysaccharides with alternated α- and β-configured blocks do not exist in nature. Such polysaccharides, and materials made thereof, might exhibit very interesting properties due to the different supramolecular structures of the two α- and β-configured blocks. This would be helical for starch and linear for cellulose in the case of a non-derivatized all-glucose polysaccharide.

View Article and Find Full Text PDF

Currently, almost all polymer optical materials are derived from fossil resources with known consequences for the environment. In this work, a processing route to obtain cellulose-based biopolymer optical fibers is presented. For this purpose, the optical properties such as the transmission and the refractive index dispersion of regenerated cellulose, cellulose diacetate, cellulose acetate propionate, and cellulose acetate butyrate were determined from planar films.

View Article and Find Full Text PDF

Recently, the authors reported on the development of crystallinity in mixed-tacticity polyhydroxybutyrates. Comparable values reported in the literature vary depending on the manner of determination, the discrepancies being partially attributable to scattering from paracrystalline portions of the material. These portions can be qualified by peak profile fitting or quantified by allocation of scattered X-ray intensities.

View Article and Find Full Text PDF

Biomimetics is a known innovation paradigm of the twenty-first century with significant impact on science, society, economy, and challenges of sustainability. As such, it can be understood as a mindset for creative thinking and as a methodology or technique for effective knowledge transfer between disciplines, mainly biology and technology. As biomimetics is relevant to practitioners in various fields of application, understanding the teaching and training of biomimetics for different audiences is important.

View Article and Find Full Text PDF

Light guidance is a convenient and versatile way to control the positions of phototactic microorganisms. However, the illumination strategies require adaption to the respective organism. We report on the generation of structures composed of the gliding and exopolysaccharide-secreting algae Porphyridium purpureum via their photomovement.

View Article and Find Full Text PDF

The use of renewable feedstock is one of the twelve key principles of sustainable chemistry. Unfortunately, bio-based compounds often suffer from high production cost and low performance. To fully tap the potential of natural compounds it is important to utilize their functionalities that could make them superior compared to fossil-based resources.

View Article and Find Full Text PDF

Carbon particles were produced from kraft lignin through carbonization of perfectly spherical, sub-micron beads obtained by aerosol flow. The structure of the resulting carbon particles was elucidated and compared to that derived from commercially available technical lignin powder, which is undefined in geometry. In addition to the smaller diameters of the lignin beads (<1 µm) compared to those of the lignin powder (100 µm), the former displayed a slightly higher structural order as revealed by X-ray diffraction and Raman spectroscopy.

View Article and Find Full Text PDF

Grass silage as a renewable feedstock for an integrated biorefinery includes nutrients and carbon sources directly available in the press juice (PJ) and in lignocellulosic saccharides from the plant framework. Here, a novel two-stage fed-batch fermentation process for biosynthesis of poly-3-hydroxybutyrate (PHB) by Cupriavidus necator DSM 531 is presented. For bacterial growth, nutrient-rich PJ was employed as a fermentation medium, without any supplements.

View Article and Find Full Text PDF

We report on a method for the preparation of cellulose/chitin composite materials from the ionic liquid 1-butyl-3-methylimidazolium acetate and γ-valerolactone as a biosourced sustainable co-solvent. Element analysis and attentuated total reflectance Fourier transform infrared spectroscopy show that the average degree of acetylation of chitin in the composite materials was around 82.5%.

View Article and Find Full Text PDF

This article presents experimental data of organosolv lignin from Poacea grass and structural changes after compounding and injection molding as presented in the research article "Effects of high-lignin-loading on thermal, mechanical, and morphological properties of bioplastic composites" [1]. It supplements the article with morphological (SEM), spectroscopic (P NMR, FT-IR) and chromatographic (GPC, EA) data of the starting lignin as well as molar mass characteristics (mass average molar mass (M) and Polydispersity (D)) of the extracted lignin. Refer to Schwarz et al.

View Article and Find Full Text PDF

Bioinspiration, biomorphy, biomimicry, biomimetics, bionics, and biotemplating are terms used to describe the fabrication of materials or, more generally, systems to solve technological problems by abstracting, emulating, using, or transferring structures from biological paradigms. Herein, a brief overview of how the different terminologies are being typically applied is provided. It is proposed that there is a rich field of research that can be expanded by utilizing various novel approaches for the guidance of living organisms for "bio-mediated" material structuring purposes.

View Article and Find Full Text PDF

Motile plant structures (e.g., leaves, petals, cone scales, and capsules) are functionally highly robust and resilient concept generators for the development of biomimetic actuators for architecture.

View Article and Find Full Text PDF

Living nature and human technology apply different principles to create hard, strong and tough materials. In this review, we compare and discuss prominent aspects of these alternative strategies, and demonstrate for selected examples that nanoscale-precision biotemplating is able to produce uncommon mechanical properties as well as actuating behavior, resembling to some extent the properties of the original natural templates. We present and discuss mechanical testing data showing for the first time that nanometer-precision biotemplating can lead to porous ceramic materials with deformation characteristics commonly associated with either biological or highly advanced technical materials.

View Article and Find Full Text PDF

An integrated refining and pulping process for ensiled biomass from permanent grassland was established on laboratory scale. The liquid phase, containing the majority of water-soluble components, including 24% of the initial dry matter (DM), was first separated by mechanical pressing. The fiber fraction was subjected to high solid load saccharification (25% DM) to enhance the lignin content in the feed for subsequent organosolvation.

View Article and Find Full Text PDF

The former ovuliferous scales of biotemplated cones of Pinus nigra show moisture-driven actuation similar to their biological templates, demonstrating a facile route to obtain ceramic moisture-sensitive bilayer actuators. Based on comparative analysis of their hierarchical nanometer-precision replica structures, using, e.g.

View Article and Find Full Text PDF

The oxides of the transition metal molybdenum exhibit excellent antimicrobial properties. We present the preparation of molybdenum trioxide dihydrate (MoO3 × 2H2O) by an acidification method and demonstrate the thermal phase development and morphological evolution during and after calcination from 25 °C to 600 °C. The thermal dehydration of the material was found to proceed in two steps.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionudujnbc77cd08nvs6lpgjrdnumf1fnrg): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once