Free Radic Biol Med
November 2024
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social communication and the presence of restricted interests and repetitive behavior. To date, no single cause has been demonstrated but both genetic and environmental factors are believed to be involved in abnormal brain development. In recent years, immunological and mitochondrial dysfunctions acquired particular interest in the study of the molecular mechanisms underlying the pathophysiology of ASD.
View Article and Find Full Text PDFArch Biochem Biophys
July 2024
To date, Rett syndrome (RTT), a genetic disorder mainly caused by mutations in the X-linked MECP2 gene, is increasingly considered a broad-spectrum pathology, instead of just a neurodevelopmental disease, due to the multitude of peripheral co-morbidities and the compromised metabolic pathways, affecting the patients. The altered molecular processes include an impaired mitochondrial function, a perturbed redox homeostasis, a chronic subclinical inflammation and an improper cholesterol metabolism. The persistent subclinical inflammatory condition was first defined ten years ago, as a previously unrecognized feature of RTT, playing a role in the pathology progress and modulation of phenotypical severity.
View Article and Find Full Text PDFNeuroinflammation plays a crucial role in the onset and the progression of several neuropathologies, from neurodegenerative disorders to migraine, from Rett syndrome to post-COVID 19 neurological manifestations. Inflammasomes are cytosolic multiprotein complexes of the innate immune system that fuel inflammation. They have been under study for the last twenty years and more recently their involvement in neuro-related conditions has been of great interest as possible therapeutic target.
View Article and Find Full Text PDFNLRP1 is one of the major inflammasomes modulating the cutaneous inflammatory responses and therefore linked to a variety of cutaneous conditions. Although NLRP1 has been the first inflammasome to be discovered, only in the past years a significant progress was achieved in understanding the molecular mechanism and the stimuli behind its activation. In the past decades a crescent number of studies have highlighted the role of air pollutants as Particulate Matter (PM), Cigarette Smoke (CS) and Ozone (O) as trigger stimuli for inflammasomes activation, especially via Reactive Oxygen Species (ROS) mediators.
View Article and Find Full Text PDFRett syndrome (RTT), a devastating neurodevelopmental disorder, is caused in 95% of the cases by mutations in the X-chromosome-localized MECP2 gene. To date, RTT is considered a broad-spectrum disease, due to multisystem disturbances affecting patients, associated with mitochondrial dysfunctions, subclinical inflammation and an overall OxInflammatory status. Inflammasomes are multi-protein complexes crucially involved in innate immune responses against pathogens and oxidative stress mediators.
View Article and Find Full Text PDFRett syndrome (RTT) is a monogenic neurodevelopmental disorder primarily caused by mutations in X-linked gene, encoding for methyl-CpG binding protein 2 (MeCP2), a multifaceted modulator of gene expression and chromatin organization. Based on the type of mutation, RTT patients exhibit a broad spectrum of clinical phenotypes with various degrees of severity. In addition, as a complex multisystem disease, RTT shows several clinical manifestations ranging from neurological to non-neurological symptoms.
View Article and Find Full Text PDFHuman umbilical cord endothelial cells (HUVECs) obtained from women affected by gestational diabetes (GD-HUVECs) display durable pro-atherogenic modifications and might be considered a valid in vitro model for studying chronic hyperglycemia effects on early endothelial senescence. Here, we demonstrated that GD- compared to C-HUVECs (controls) exhibited oxidative stress, altered both mitochondrial membrane potential and antioxidant response, significant increase of senescent cells characterized by a reduced NAD-dependent deacetylase sirtuin-1 (SIRT1) activity together with an increase in cyclin-dependent kinase inhibitor-2A (P16), cyclin-dependent kinase inhibitor-1 (P21), and tumor protein p53 (P53) acetylation. This was associated with the p300 activation, and its silencing significantly reduced the GD-HUVECs increased protein levels of P300 and Ac-P53 thus indicating a persistent endothelial senescence via SIRT1/P300/P53/P21 pathway.
View Article and Find Full Text PDFRett Syndrome (RTT) is a rare neurodevelopmental disorder caused in the 95% of cases by mutations in the X-linked MECP2 gene, affecting almost exclusively females. While the genetic basis of RTT is known, the exact pathogenic mechanisms that lead to the broad spectrum of symptoms still remain enigmatic. Alterations in the redox homeostasis have been proposed among the contributing factors to the development and progression of the syndrome.
View Article and Find Full Text PDFRett syndrome (RTT) is a progressive neurodevelopmental disorder caused by mutations in the X-linked MECP2 gene. RTT patients show multisystem disturbances associated with perturbed redox homeostasis and inflammation, which appear as possible key factors in RTT pathogenesis. In this study, using primary dermal fibroblasts from control and RTT subjects, we performed a proteomic analysis that, together with data mining approaches, allowed us to carry out a comprehensive characterization of RTT cellular proteome.
View Article and Find Full Text PDFAutism spectrum disorder (ASD) has been hypothesized to be a result of the interplay between genetic predisposition and increased vulnerability to early environmental insults. Mitochondrial dysfunctions appear also involved in ASD pathophysiology, but the mechanisms by which such alterations develop are not completely understood. Here, we analyzed ASD primary fibroblasts by measuring mitochondrial bioenergetics, ultrastructural and dynamic parameters to investigate the hypothesis that defects in these pathways could be interconnected phenomena responsible or consequence for the redox imbalance observed in ASD.
View Article and Find Full Text PDFMutations in X-linked gene methyl-CpG-binding protein 2 (MECP2), a key transcriptional regulator, account for most cases of Rett syndrome (RTT), a devastating neurodevelopmental disorder with no known cure. Despite extensive research to elucidate MeCP2 functions, the mechanisms underlying RTT pathophysiology are still unclear. In addition to a variety of neurological symptoms, RTT also includes a plethora of additional phenotypical features including altered lipid metabolism, redox imbalance, immune dysfunction and mitochondrial abnormalities that explain its multisystemic nature.
View Article and Find Full Text PDFRett syndrome (RTT) is a progressive neurodevelopmental disorder mainly caused by mutations in the X-linked MECP2 gene. RTT patients show multisystem disturbances associated with an oxinflammatory status. Inflammasomes are multi-protein complexes, responsible for host immune responses against pathogen infections and redox-related cellular stress.
View Article and Find Full Text PDFUncontrolled accumulation of methylglyoxal (MG) and reactive oxygen species (ROS) occurs in hyperglycemia-induced endothelial dysfunction associated with diabetes. Resveratrol (RSV) protects the endothelium upon high glucose (HG); however, the mechanisms underlying such protective effects are still debated. Here we identified key molecular players involved in the glycative/oxidative perturbations occurring in endothelial cells exposed to HG.
View Article and Find Full Text PDFDiabetes is associated with vascular inflammation, endothelial dysfunction, and oxidative stress, promoting the development of cardiovascular diseases (CVD). Several studies showed that a carotenoid-rich diet is associated to a reduced cardiovascular risk in healthy and diabetic subjects, although the mechanisms of action are still unknown. Here, the potential role of -carotene (BC) and lycopene (Lyc) in human endothelial cells isolated from human umbilical cord vein (HUVECs) of women with gestational diabetes (GD) and respective controls (C) has been investigated.
View Article and Find Full Text PDFRett syndrome (RTT) is a human neurodevelopmental disorder, whose pathogenesis has been linked to both oxidative stress and subclinical inflammatory status (OxInflammation). Methylglyoxal (MG), a glycolytic by-product with cytotoxic and pro-oxidant power, is the major precursor in vivo of advanced glycation end products (AGEs), which are known to exert their detrimental effect via receptor- (e.g.
View Article and Find Full Text PDFMutations in the MECP2 gene are the main cause of Rett syndrome (RTT), a pervasive neurodevelopmental disorder, that shows also multisystem disturbances associated with a metabolic component. The aim of this study was to investigate whether an increased production of oxidized linoleic acid metabolites, specifically 9- and 13-hydroxyoctadecadienoic acids (HODEs), can contribute to the altered the redox and immune homeostasis, suggested to be involved in RTT. Serum levels of 9- and 13-HODEs were elevated in RTT and associated with the expression of arachidonate 15-Lipoxygenase (ALOX15) in peripheral blood mononuclear cells (PBMCs).
View Article and Find Full Text PDFModern technologies relying on wireless communication systems have brought increasing levels of electromagnetic field (EMF) exposure. This increased research interest in the effects of these radiations on human health. There is compelling evidence that EMFs affect cell physiology by altering redox-related processes.
View Article and Find Full Text PDFElectrical devices currently used in clinical practice and common household equipments generate extremely low-frequency magnetic fields (ELF-MF) that were classified by the International Agency for Research on Cancer as "possible carcinogenic." Assuming that ELF-MF plays a role in the carcinogenic process without inducing direct genomic alterations, ELF-MF may be involved in the promotion or progression of cancers. In particular, ELF-MF-induced responses are suspected to activate redox-responsive intracellular signaling or detoxification scavenging systems.
View Article and Find Full Text PDFIn accordance with the classification of the International Agency for Research on Cancer, extremely low frequency magnetic fields (ELF-MF) are suspected to promote malignant progression by providing survival advantage to cancer cells through the activation of critical cytoprotective pathways. Among these, the major antioxidative and detoxification defence systems might be targeted by ELF-MF by conferring cells significant resistance against clinically-relevant cytotoxic agents. We investigated whether the hyperproliferation that is induced in SH-SY5Y human neuroblastoma cells by a 50 Hz, 1 mT ELF magnetic field was supported by improved defence towards reactive oxygen species (ROS) and xenobiotics, as well as by reduced vulnerability against both HO and anti-tumor ROS-generating drug doxorubicin.
View Article and Find Full Text PDFPopulation aging results in urgent needs of interventions aimed at ensuring healthy senescence. Exercise often results in healthy aging, yet many molecular mechanisms underlying such effects still need to be identified. We here investigated whether the age-dependent accumulation of oxidative and methylglyoxal- (MG-) related molecular damage could be delayed by moderate exercise in the mouse ovary, an organ that first exhibits impaired function with advancing age in mammals.
View Article and Find Full Text PDFChildhood obesity is commonly associated with early signs of endothelial dysfunction, characterized by impairment of insulin signaling and vascular Nitric Oxide (NO) availability. However, the underlying mechanisms remain to be established. Hence, we tested the hypothesis that endothelial insulin-stimulated NO production and availability was impaired and related to Endoplasmic Reticulum (ER) in human umbilical vein endothelial cells (HUVECs) cultured with plasma obtained from pre-pubertal obese (OB) children.
View Article and Find Full Text PDFExtremely low frequency magnetic fields (ELF-MF) are common environmental agents that are suspected to promote later stages of tumorigenesis, especially in brain-derived malignancies. Even though ELF magnetic fields have been previously linked to increased proliferation in neuroblastoma cells, no previous work has studied whether ELF-MF exposure may change key biomolecular features, such as anti-glycative defence and energy re-programming, both of which are currently considered as crucial factors involved in the phenotype and progression of many malignancies. Our study investigated whether the hyperproliferation that is induced in SH-SY5Y human neuroblastoma cells by a 50 Hz, 1 mT ELF magnetic field is supported by an improved defense towards methylglyoxal (MG), which is an endogenous cancer-static and glycating α-oxoaldehyde, and by rewiring of energy metabolism.
View Article and Find Full Text PDFBackground And Aims: Diabetes mellitus is associated with inflammatory endothelial activation and increased vascular leukocyte adhesion molecule expression, both playing a prominent role in the development of vascular complications. Centella asiatica (CA) and Lipoic Acid (LA) have shown anti-inflammatory and anti-oxidant properties in a variety of experimental models; however, their action on human umbilical vein endothelial cells (HUVECs), chronically exposed to hyperglycemia and pro-inflammatory environment during pregnancy, is still unknown.
Methods And Results: In HUVECs from umbilical cords of gestational diabetic (GD) or healthy (C) women, both CA and LA affected tumor necrosis factor-α (TNF-α)-induced inflammation, being associated with a significant decrease in vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) expression (western blot) and exposure (flow cytometry), as well as monocyte-HUVECs interaction (adhesion assay).