The effects of polyphenols from Tasmanian pepper (Tasmannia Lanceolata) leaf and berry on the functional properties of pea protein were investigated in flaxseed oil-in-water emulsions. Phenolic acids and flavonols in Tasmanian pepper leaf with smaller molecular weights led to stronger non-covalent interactions with pea protein, while anthocyanins from Tasmanian pepper berry induced protein aggregation under acidic condition and co-existed with proteins in neutral and alkaline conditions. The total phenolic content was significantly increased with incorporation of polyphenols from Tasmanian pepper leaf (334.
View Article and Find Full Text PDFThis review highlights the development of plant proteins from a wide variety of sources, as most of the research and development efforts to date have been limited to a few sources including soy, chickpea, wheat, and pea. The native structure of plant proteins during production and their impact on food colloids including emulsions, foams, and gels are considered in relation to their fundamental properties, while highlighting the recent developments in the production and processing technologies with regard to their impacts on the molecular properties and aggregation of the proteins. The ability to quantify structural, morphological, and rheological properties can provide a better understanding of the roles of plant proteins in food systems.
View Article and Find Full Text PDFPlant-based proteins, represented by amaranth in our study, embrace a potential as an ingredient for the functional-food formulation. However, their efficacy is hindered by inherent limitations in solubility, emulsification, and antioxidant traits. The Maillard reaction, a complex chemical-process resulting in a diverse array of products, including Maillard conjugates and Maillard reaction products (MRPs), can employ variable effects on these specific attributes.
View Article and Find Full Text PDFRoasting could modify the protein structure/conformation, contributing to changes in functional properties. Here we investigated the effects of pre-roasting on the extraction efficiency, structural and functional properties of pea protein concentrates and isolates (PPC and PPI) produced from yellow split peas. The shorter roasting times (150 °C, 10 and 20 min) had little effect on protein yields and could increase the solubility of PPC or PPI by ∼ 12% at pH 7 and enhance the solubility of PPI by ∼ 12% (10-min roasting) and ∼ 24% (20-min roasting) at pH 3.
View Article and Find Full Text PDFThis study aims to elucidate the stability of spray dried β-carotene microcapsules by identifying their surface composition using synchrotron-Fourier transform infrared (FTIR) microspectroscopy. To investigate the impact of enzymatic cross-linking and polysaccharide addition on heteroprotein, three wall materials were prepared: pea/whey protein blends (Con), cross-linked pea/whey protein blends (TG), and cross-linked pea/whey protein blends-maltodextrin complex (TG-MD). The TG-MD exhibited the highest encapsulation efficiency (>90 %) after 8 weeks of storage followed by TG and Con.
View Article and Find Full Text PDFRecent advances in the understanding of formulations and processing techniques have allowed for greater freedom in plant-based emulsion gel design to better recreate conventional animal-based foods. The roles of plant-based proteins, polysaccharides, and lipids in the formulation of emulsion gels and relevant processing techniques such as high-pressure homogenization (HPH), ultrasound (UH), and microfluidization (MF), were discussed in correlation with the effects of varying HPH, UH, and MF processing parameters on emulsion gel properties. The characterization methods for plant-based emulsion gels to quantify their rheological, thermal, and textural properties, as well as gel microstructure, were presented with a focus on how they can be applied for food purposes.
View Article and Find Full Text PDFCompared to traditional drug release monitoring with manual sampling and testing procedures, low-field nuclear magnetic resonance (LF-NMR) imaging is a one-step, visual, non-destructive, and non-invasive measurement method. Here, we reported the application of LF-NMR to image the morphology, component, sub-diffusion, and spatial distribution of a solid oral formulation, Biyankang tablets, during dissolution in vitro. The drug ingredients with characteristic relaxation times were distinguished and localized based on the signal of standards, such as patchouli oil, Xanthium strumarium extract, and starch.
View Article and Find Full Text PDFSaturated fatty acid-containing lipids, such as milkfat, may protect long chain polyunsaturated fatty acids in fish oil when blended together into solid lipid particles (SLPs). One of the main challenges of SLPs is structural polymorphism, which can lead to expulsion of the protected component during prolonged storage. To investigate this phenomenon, the change in thermal and crystalline behaviours, and fatty acid distribution, were analysed in SLPs of fish oil and milkfat during storage at different temperatures for up to 28 days.
View Article and Find Full Text PDFA dynamic in vitro human stomach (DIVHS), simulating the anatomical structures, peristalsis, and biochemical environments of a real stomach as practically as possible, was applied to mimic the gastric pH and emptying during yogurt digestion in short/long gastric residence times. The influences of peristalsis, dilution, and proteolysis on digesta viscosity were quantified respectively, indicating the dominant role of proteolysis and dilution. After incorporating curcumin-whey protein microparticles with targeted-release formula in yogurt, the peak curcumin release during intestinal digestion reached 43% at 120 min in the short gastric residence time and 16% at 180 min in the long gastric residence time.
View Article and Find Full Text PDFAsthma (chronic allergic airways disease, AAD) is characterized by airway inflammation (AI), airway remodeling (AWR) and airway hyperresponsiveness (AHR). Current treatments for AAD mainly focus on targeting AI and its contribution AHR, with the use of corticosteroids. However, there are no therapies for the direct treatment of AWR, which can contribute to airway obstruction, AHR and corticosteroid resistance independently of AI.
View Article and Find Full Text PDFCrit Rev Food Sci Nutr
September 2022
Plant-derived protein research has gained attention in recent years due to the rise of health concerns, allergenicity, trends toward vegan diet, food safety, and sustainability; but the lower techno-functional attributes of plant proteins compared to those of animals still remain a challenge for their utilization. Maillard conjugation is a protein side-chain modification reaction which is spontaneous, and do not require additional chemical additive to initiate the reaction. The glycoconjugates formed during the reaction significantly improves the thermal stability and pH sensitivity of proteins.
View Article and Find Full Text PDFThe blend of fish oil with a high percentage of long chain poly-unsaturated fatty acids, and milkfat with a high percentage of saturated fatty acids, could potentially demonstrate desirable characteristics from both components, such as increased omega-3 fatty acids and melting point, as well as improved crystallization and oxidative stability. In this study, the effect of various milkfat concentrations on thermal properties and crystalline structure of these blends were analysed to understand parameters determining the overall characteristics of the blend. Blends with different ratios of fish oil: milkfat (9:1, 7:3, 5:5, 3:7, 1:9), as well as pure fish oil and pure milkfat, were investigated at different cooling conditions.
View Article and Find Full Text PDFThe construction of biological proton channel analogues has attracted substantial interest owing to their wide potential in separation of ions, sensing, and energy conversion. Here, metal-organic framework (MOF)/polymer heterogeneous nanochannels are presented, in which water molecules are confined to disordered clusters in the nanometer-sized polymer regions and to ordered chains with unique molecular configurations in the 1D sub-1-nm porous MOF regions, to realize unidirectional, fast, and selective proton transport properties, analogous to natural proton channels. Given the nano-to-subnano confined water junctions, experimental proton conductivities in the polymer-to-MOF direction of the channels are much higher than those in the opposite direction, showing a high rectification up to 500 and one to two orders of magnitude enhancement compared to the conductivity of proton transport in bulk water.
View Article and Find Full Text PDFBiological proton channels are sub-1-nm protein pores with ultrahigh proton (H) selectivity over other ions. Inspired by biological proton channels, developing artificial proton channels with biological-level selectivity is of fundamental significance for separation science. Herein we report synthetic proton channels fabrication based on sulfonated metal-organic frameworks (MOFs), UiO-66-X, X = SAG, NH-SAG, (NH-SAG) (SAG: sulfonic acid groups), which have sub-1-nm windows and a high density of sulfonic acid groups mimicking natural proton channels.
View Article and Find Full Text PDFMesoporous aluminosilicates are promising solid acid catalysts. They are also excellent supports for transition metal catalysts for various catalytic applications. Synthesis of mesoporous aluminosilicates with controllable particle size, morphology, and structure, as well as adjustable acidity and high hydrothermal stability, is very desirable.
View Article and Find Full Text PDFDespite developments in pulmonary radiotherapy, radiation-induced lung toxicity remains a problem. More sensitive lung imaging able to increase the accuracy of diagnosis and radiotherapy may help reduce this problem. Super-paramagnetic iron oxide nanoparticles are used in imaging, but without further modification can cause unwanted toxicity and inflammation.
View Article and Find Full Text PDFEffective design of bifunctional catalysts for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is important but remains challenging. Herein, we report a three-dimensional (3D) hierarchical structure composed of homogeneously distributed Ni-Fe-P nanoparticles embedded in N-doped carbons on nickel foams (denoted as Ni-Fe-P@NC/NF) as an excellent bifunctional catalyst. This catalyst was fabricated by an anion exchange method and a low-temperature phosphidation of nanotubular Prussian blue analogue (PBA).
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2020
High desalination efficiency in principle could be achieved by layer-by-layer graphene oxide (GO) membranes, which benefits from their entrance-functionalized channels assembled by edge-functionalized GO nanosheets. The effects of these edge functional groups on desalination, however, are not fully understood yet. To study the isolated influence of three typical edge functional groups, namely, carboxyl (-COOH), hydroxyl (-OH), and hydrogen (-H), molecular dynamics simulation was used in this work.
View Article and Find Full Text PDFThe use of nanoparticles for pulmonary delivery poses challenges such as the presence of anatomical barriers and the loss of bioactive components. Excipients are often used to facilitate delivery. Excipients suitable for nanoparticle delivery are still being explored.
View Article and Find Full Text PDFThe fast and scalable spray-drying-assisted evaporation-induced self-assembly (EISA) synthesis of hierarchically porous SBA-15-type silica microparticles from a water-based system is demonstrated. The SBA-15-type silica microparticles has bowl-like shapes, uniform micro-sizes (∼90 µm), large ordered mesopores (∼9.5 nm), hierarchical meso-/macropores (20-100 nm) and open surfaces.
View Article and Find Full Text PDFEnviron Sci Technol
July 2019
Graphene-based laminar membranes open new avenues for water treatment; in particular, reduced graphene oxide (rGO) membranes with high stability in aqueous solutions are gaining increased attention for desalination. However, the low water permeability of these membranes significantly limits their applications. In this study, the water permeability of thermally reduced GO membrane was increased by a factor of 26 times by creating in-plane nanopores with an average diameter of ∼3 nm and a high density of 2.
View Article and Find Full Text PDFCoS2-MoS2 nanoflakes decorated MoO2 (CoMoOS) hybrid submicro-wires with rich active interfaces were synthesized via the sulfuration of CoMoO4. They showed excellent activity while synergistically catalyzing the hydrogen evolultion reaction (HER) in basic media by promoting both the water dissociation and hydrogen absorption steps. Thus, the CoMoOS catalysts only needed 123 mV to achieve 10 mA cm-2 with a small Tafel slope in alkaline solutions, and required 1.
View Article and Find Full Text PDF