The human sensorimotor system has a remarkable ability to quickly and efficiently learn movements from sensory experience. A prominent example is sensorimotor adaptation, learning that characterizes the sensorimotor system's response to persistent sensory errors by adjusting future movements to compensate for those errors. Despite being essential for maintaining and fine-tuning motor control, mechanisms underlying sensorimotor adaptation remain unclear.
View Article and Find Full Text PDFDynamic resting state functional connectivity (RSFC) characterizes time-varying fluctuations of functional brain network activity. While many studies have investigated static functional connectivity, it has been unclear whether features of dynamic functional connectivity are associated with neurodegenerative diseases. Popular sliding-window and clustering methods for extracting dynamic RSFC have various limitations that prevent extracting reliable features to address this question.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a neurodegenerative disease involving cognitive impairment and abnormalities in speech and language. Here, we examine how AD affects the fidelity of auditory feedback predictions during speaking. We focus on the phenomenon of speaking-induced suppression (SIS), the auditory cortical responses' suppression during auditory feedback processing.
View Article and Find Full Text PDFSubjective tinnitus is an auditory phantom perceptual disorder without an objective biomarker. Fast and efficient diagnostic tools will advance clinical practice by detecting or confirming the condition, tracking change in severity, and monitoring treatment response. Motivated by evidence of subtle anatomical, morphological, or functional information in magnetic resonance images of the brain, we examine data-driven machine learning methods for joint tinnitus classification (tinnitus or no tinnitus) and tinnitus severity prediction.
View Article and Find Full Text PDFObjectives: Auditory cortical activation of the two hemispheres to monaurally presented tonal stimuli has been shown to be asynchronous in normal hearing (NH) but synchronous in the extreme case of adult-onset asymmetric hearing loss (AHL) with single-sided deafness. We addressed the wide knowledge gap between these two anchoring states of interhemispheric temporal organization. The objectives of this study were as follows: (1) to map the trajectory of interhemispheric temporal reorganization from asynchrony to synchrony using magnitude of interaural threshold difference as the independent variable in a cross-sectional study and (2) to evaluate reversibility of interhemispheric synchrony in association with hearing in noise performance by amplifying the aidable poorer ear in a repeated measures, longitudinal study.
View Article and Find Full Text PDFNeurodynamic Utility Toolbox for Magnetoencephalo- and Electroencephalography (NUTMEG) is an open-source MATLAB-based toolbox for the analysis and reconstruction of magnetoencephalography/electroencephalography data in source space. NUTMEG includes a variety of options for the user in data import, preprocessing, source reconstruction, and functional connectivity. A group analysis toolbox allows the user to run a variety of inferential statistics on their data in an easy-to-use GUI-driven format.
View Article and Find Full Text PDFAuditory working memory impairments feature prominently in schizophrenia. However, the existence of altered and perhaps compensatory neural dynamics, sub-serving auditory working memory, remains largely unexplored. We compared the dynamics of induced high gamma power (iHGP) across cortex in humans during speech-sound working memory in individuals with schizophrenia (SZ) and healthy comparison subjects (HC) using magnetoencephalography (MEG).
View Article and Find Full Text PDFSchizophrenia is a neurocognitive illness characterized by behavioral and neural impairments in both early auditory processing and higher order verbal working memory. Previously we have shown intervention-specific cognitive performance improvements with computerized, targeted training of auditory processing (AT) when compared to a computer games (CG) control intervention that emphasized visual processing. To investigate spatiotemporal changes in patterns of neural activity specific to the AT intervention, the current study used magnetoencephalography (MEG) imaging to derive induced high gamma band oscillations (HGO) during auditory encoding, before and after 50 h (∼10 weeks) of exposure to either the AT or CG intervention.
View Article and Find Full Text PDFSensorimotor deficits are prevalent in many neurodevelopmental disorders like autism, including one of its common genetic etiologies, a 600 kb reciprocal deletion/duplication at 16p11.2. We have previously shown that copy number variations of 16p11.
View Article and Find Full Text PDFSchizophrenia is characterized by dysfunction in basic auditory processing, as well as higher-order operations of verbal learning and executive functions. We investigated whether targeted cognitive training of auditory processing improves neural responses to speech stimuli, and how these changes relate to higher-order cognitive functions. Patients with schizophrenia performed an auditory syllable identification task during magnetoencephalography before and after 50 hours of either targeted cognitive training or a computer games control.
View Article and Find Full Text PDFAlthough it is well established that multiple frontal, parietal, and occipital regions in humans are involved in anticipatory deployment of visual spatial attention, less is known about the electrophysiological signals in each region across multiple subsecond periods of attentional deployment. We used MEG measures of cortical stimulus-locked, signal-averaged (event-related field) activity during a task in which a symbolic cue directed covert attention to the relevant location on each trial. Direction-specific attention effects occurred in different cortical regions for each of multiple time periods during the delay between the cue and imperative stimulus.
View Article and Find Full Text PDFSuccessful linguistic processing requires efficient encoding of successively-occurring auditory input in a time-constrained manner, especially under noisy conditions. In this study we examined the early neural response dynamics to rapidly-presented successive syllables in schizophrenia participants and healthy comparison subjects, and investigated the effects of noise on these responses. We used magnetoencephalography (MEG) to reveal the time-course of stimulus-locked activity over bilateral auditory cortices during discrimination of syllable pairs that differed either in voice onset time (VOT) or place of articulation (POA), in the presence or absence of noise.
View Article and Find Full Text PDFA critical research priority for our field is to develop treatments that enhance cognitive functioning in schizophrenia and thereby attenuate the functional losses associated with the illness. In this article, we describe such a treatment method that is grounded in emerging research on the widespread sensory processing impairments of schizophrenia, as described elsewhere in this special issue. We first present the rationale for this treatment approach, which consists of cognitive training exercises that make use of principles derived from the past 2 decades of basic science research in learning-induced neuroplasticity; these exercises explicitly target not only the higher order or "top-down" processes of cognition but also the content building blocks of accurate and efficient sensory representations to simultaneously achieve "bottom-up" remediation.
View Article and Find Full Text PDFStatistical inference from MEG-based distributed activation maps is well suited to the general linear modeling framework, a standard approach to the analysis of fMRI and PET neuroimaging studies. However, there are important differences from the other neuroimaging modalities related to how observations are created and fitted in GLM models, as well as how subsequent statistical inference is performed. In this paper, we demonstrate how MEG oscillatory components can be analyzed in this framework based on a custom ANCOVA model that takes into account baseline and inter-hemispheric effects, rather than a simpler ANOVA design.
View Article and Find Full Text PDFBrain-based models of visual attention hypothesize that attention-related benefits afforded to imperative stimuli occur via enhancement of neural activity associated with relevant spatial and non-spatial features. When relevant information is available in advance of a stimulus, anticipatory deployment processes are likely to facilitate allocation of attention to stimulus properties prior to its arrival. The current study recorded EEG from humans during a centrally-cued covert attention task.
View Article and Find Full Text PDFIn this study, we determined whether the visuospatial attention network of frontal, parietal, and occipital cortex can be parsed into two different subsets of active regions associated with transient and sustained processes within the same cue-to-target delay period of an endogenously cued visuospatial attention task. We identified regions with early transient activity and regions with later sustained activity during the same trials using a general linear model analysis of event-related BOLD functional MRI data with two timecourse covariates for the same cue-to-target delay period. During the delay between the cue and target, we observed significant transient activity in right frontal eye field and right occipital-parietal junction, and significant sustained activity in right ventral intraparietal sulcus and right dorsolateral and anterior prefrontal cortex.
View Article and Find Full Text PDFAttentional control involves the ability to allocate preparatory attention to improve subsequent stimulus processing and response selection. There is behavioral evidence to support the hypothesis that increased expectancy of stimulus and response conflict may decrease the subsequent experience of conflict during task performance. We used a cued flanker and event-related fMRI design to separate processes involved in preparation from those involved in resolving conflict and to identify the brain systems involved in these processes as well as the association between preparatory activity levels and activity related to subsequent conflict processing.
View Article and Find Full Text PDFWe investigated preparatory attention processes when a spatial discrimination was required at a cued location, by measuring electroencephalography following a central symbolic cue to deploy spatial attention. Electroencephalography activity in response to the cue revealed three cue-related activations: an early-onset positivity following the P1 at posterior scalp sites contralateral to the cued location, followed by cue-related frontal scalp activity and later-onset sustained activity at posterior scalp sites contralateral to the cued location. The early contralateral positivity may reflect rapid targeting of the cued location.
View Article and Find Full Text PDF