The oxygen evolution reaction (OER) is a key reaction for water electrolysis cells and air-powered battery applications. However, conventional metal oxide catalysts, used for high-performing OER, tend to incorporate comparatively expensive and less abundant precious metals such as Ru and Ir, and, moreover, suffer from poor stability. To attempt to mitigate for all of these issues, we have prepared one-dimensional (1D) OER-active perovskite nanorods using a unique, simple, generalizable, and robust method.
View Article and Find Full Text PDFUnderstanding the key parameters necessary for generating uniform Er,Yb co-activated NaYF possessing various selected phases (i.e. cubic or hexagonal) represents an important chemical strategy towards tailoring optical behavior in these systems.
View Article and Find Full Text PDF"Flower-like" motifs of Li4Ti5O12 were synthesized by using a facile and large-scale hydrothermal process involving unique Ti foil precursors followed by a short, relatively low-temperature calcination in air. Moreover, a detailed time-dependent growth mechanism and a reasonable reaction scheme were proposed to clearly illustrate and highlight the structural evolution and subsequent formation of this material. Specifically, the resulting "flower-like" Li4Ti5O12 microspheres consisting of thin nanosheets provide for an enhanced surface area and a reduced lithium-ion diffusion distance.
View Article and Find Full Text PDF