We present a newly developed synthetic route to 2-bromo-2-fluoro ribolactone based on our published 2-chloro-2-fluoro ribolactone synthesis. Stereoselective fluorination is key to controlling the 2-diastereoselectivity. We also report a substantially improved glycosylation reaction with both the 2-bromo-2-fluoro and 2-chloro-2-fluoro sugars.
View Article and Find Full Text PDFWe report herein the synthesis and evaluation of a series of β-d-2'-deoxy-2'-α-chloro-2'-β-fluoro and β-d-2'-deoxy-2'-α-bromo-2'-β-fluoro nucleosides along with their corresponding phosphoramidate prodrugs. Key intermediates, lactols 11 and 12, were obtained by a diastereoselective fluorination of protected 2-deoxy-2-chloro/bromo-ribonolactones 7 and 8. All synthesized nucleosides and prodrugs were evaluated with a hepatitis C virus (HCV) subgenomic replicon system.
View Article and Find Full Text PDFHepatitis C virus (HCV) nucleoside inhibitors display pan-genotypic activity, a high barrier to the selection of resistant virus, and are some of the most potent direct-acting agents with durable sustained virologic response in humans. Herein, we report, the discovery of β-d-2'-Br,2'-F-uridine phosphoramidate diastereomers 27 and 28, as nontoxic pan-genotypic anti-HCV agents. Extensive profiling of these two phosphorous diastereomers was performed to select one for in-depth preclinical profiling.
View Article and Find Full Text PDFHitherto unknown chromophoric nucleosides are reported. This novel set of visibly coloured dye-labeled 5'-nucleosides, including 1,2,4,5-tetrazine, dicyanomethylene-4H-pyran, benzophenoxazinone, 9,10-anthraquinone and azobenzene chromophores, were prepared mainly under Cu-catalyzed azide-alkyne cycloaddition (CuAAC). The design criteria are outlined.
View Article and Find Full Text PDFA novel and efficient route for the preparation of (2S)-2-chloro-2-fluorolactone 29 is described. This approach takes advantage of a highly efficient diastereoselective electrophilic fluorination reaction (94% yield; >50:1 dr).
View Article and Find Full Text PDFBackground: Modified nucleoside and nucleotide analogs are now the cornerstone of antiviral and anticancer chemotherapies. However, these compounds are not active on their own and need, after entering the cell, to be metabolized to their active 5'-triphosphate form.
Method: Limitations of these metabolic processes led to development of nucleoside/nucleotide prodrugs in which nucleosides are masked with different groups that can be intracellularly cleaved either chemically or enzymatically.
Pan-genotypic nucleoside HCV inhibitors display a high genetic barrier to drug resistance and are the preferred direct-acting agents to achieve complete sustained virologic response in humans. Herein, we report, the discovery of a β-d-2'-Cl,2'-F-uridine phosphoramidate nucleotide 16, as a nontoxic pan-genotypic anti-HCV agent. Phosphoramidate 16 in its 5'-triphosphate form specifically inhibited HCV NS5B polymerase with no marked inhibition of human polymerases and cellular mitochondrial RNA polymerase.
View Article and Find Full Text PDFCurr Protoc Nucleic Acid Chem
December 2014
The detailed synthetic protocol for the straightforward, efficient synthesis of various alkenyl acyclonucleosides, including challenging trisubstituted alkenyl acyclonucleoside phosphonates, is described. The key step of those syntheses is an olefin cross-metathesis reaction between two olefins selected based on their reactivity using well-defined ruthenium alkylidene catalysts.
View Article and Find Full Text PDFA series of imprinted polymers targeting nucleoside metabolites, prepared using a template analogue approach, are presented. These were prepared following selection of the optimum functional monomer by solution association studies using (1)H NMR titrations whereby methacrylic acid was shown to be the strongest receptor with and affinity constant of 621±51Lmol(-1)vs. 110±16Lmol(-1) for acrylamide.
View Article and Find Full Text PDFThe synthesis of new class of potential TPase inhibitors containing a difluoromethylphosphonate function as phosphate mimic is reported. This new series was prepared from a readily available fluorinated building block in few steps. Two series were evaluated as potential inhibitors: a linear series and a conformational constrained series.
View Article and Find Full Text PDF