The development of cell therapy for repairing damaged or diseased skeletal muscle has been hindered by the inability to significantly expand immature, transplantable myogenic stem cells (MuSCs) in culture. To overcome this limitation, a deeper understanding of the mechanisms regulating the transition between activated, proliferating MuSCs and differentiation-primed, poorly engrafting progenitors is needed. Here, we show that methyltransferase Setd7 facilitates such transition by regulating the nuclear accumulation of β-catenin in proliferating MuSCs.
View Article and Find Full Text PDFPrevious work has suggested that bone marrow (BM)-derived cells (BMDCs) accumulate within the CNS and could potentially associate with β-amyloid plaques in Alzheimer's disease (AD). To explore the accumulation of BMDCs in murine AD, we transplanted green fluorescent protein (GFP)-labeled BM cells into triple transgenic (3×Tg) and wild-type (wt) mice using non-irradiative myelosuppresive conditioning with busulfan (BU). We find that BU (80mg/kg) is sufficient to obtain adequate chimerism (>85%) in wt mice.
View Article and Find Full Text PDFMyeloablative preconditioning using irradiation is the most commonly used technique to generate rodents having chimeric bone marrow, employed for the study of bone marrow-derived cell accumulation in the healthy and diseased central nervous system. However, irradiation has been shown to alter the blood-brain barrier, potentially creating confounding artefacts. To better study the potential of bone marrow-derived cells to function as treatment vehicles for neurodegenerative diseases alternative preconditioning regimens must be developed.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is associated with increased numbers of microglia within the CNS. However, it is unclear to what extent bone marrow (BM)-derived cells contribute to this microgliosis. We have studied the adoptive transfer of green fluorescent protein (GFP)-labeled whole BM cells and BM from mice that express GFP only in CX(3)CR1+ cells (CX(3)CR1(+/GFP)) into the CNS of a murine model of ALS having over-expression of mutant superoxide dismutase (mSOD), and wt littermates.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is associated with increased numbers of microglia within the central nervous system (CNS). However, it is unknown whether the microgliosis results from proliferation of CNS resident microglia, or recruitment of bone marrow (BM)-derived microglial precursors. Here we assess the distribution and number of BM-derived cells in spinal cord using transplantation of green fluorescent protein (GFP)-labeled BM cells into myelo-ablated mice over-expressing human mutant superoxide dismutase 1 (mSOD), a murine model of ALS.
View Article and Find Full Text PDF