Tumor stromal cells can supply appropriate signals that may develop aggressive phenotypes of carcinoma cells and establish a complex scenario which culminates in metastasis. Recent works proposed that bone marrow-derived mesenchymal stem cells (MSC) are recruited to primary tumors. However, the exact functions of these cells in the tumor microenvironment are not well characterized, as it is reported that MSC can either promote or inhibit tumor progression.
View Article and Find Full Text PDFZoledronic acid (ZA) is a biphosphonate used for osteoporosis treatment and also proved to be effective to reduce the pain induced by bone metastases when used as adjuvant therapy in solid cancers. However, it has been recently proposed that ZA could have direct anti-tumour effects, although the molecular mechanism is unknown. We herein unravel a novel anti-tumour activity of ZA in prostate cancer (PCa), by targeting the pro-tumorigenic properties of both stromal and immune cells.
View Article and Find Full Text PDFOn the basis of recent advances indicating a key role of microenvironment for tumor progression, we investigated the role of fibroblasts, macrophages and hypoxia, for primary melanoma aggressiveness. Our data indicate a key role of hypoxia in stromal reactivity, acting on both myofibroblasts and machrophages differentiation. Hypoxic myofibroblasts are more active than macrophages in inducing melanoma invasiveness and exploit their oxidative stress due to hypoxia to secrete soluble factors favouring melanoma invasion and chemotaxis.
View Article and Find Full Text PDF