Publications by authors named "Cora-Jean S Edgell"

We have previously reported that genetically increased angiotensin-converting enzyme levels, or absence of the bradykinin B2 receptor, increase kidney damage in diabetic mice. We demonstrate here that this is part of a more general phenomenon - diabetes and, to a lesser degree, absence of the B2 receptor, independently but also largely additively when combined, enhance senescence-associated phenotypes in multiple tissues. Thus, at 12 months of age, indicators of senescence (alopecia, skin atrophy, kyphosis, osteoporosis, testicular atrophy, lipofuscin accumulation in renal proximal tubule and testicular Leydig cells, and apoptosis in the testis and intestine) are virtually absent in WT mice, detectable in B2 receptor-null mice, clearly apparent in mice diabetic because of a dominant mutation (Akita) in the Ins2 gene, and most obvious in Akita diabetic plus B2 receptor-null mice.

View Article and Find Full Text PDF

To examine the mechanisms whereby amino acids modulate nitric oxide (NO) production and blood flow in the renal vasculature, chemiluminescence techniques were used to quantify NO in the renal venous effluent of the isolated, perfused rat kidney as different amino acids were added to the perfusate. The addition of 10(-4) or 10(-3) M cationic amino acids (l-ornithine, l-lysine, or l-homoarginine) or neutral amino acids (l-glutamine, l-leucine, or l-serine) to the perfusate decreased NO and increased renal vascular resistance. Perfusion with anionic amino acids (l-glutamate or l-aspartate) had no effect on either parameter.

View Article and Find Full Text PDF

Testican-1 is a highly conserved, multidomain proteoglycan that is most prominently expressed in the thalamus of the brain, and is upregulated in activated astroglial cells of the cerebrum. Several functions of this gene product have now been demonstrated in vitro including membrane-type matrix metalloproteinase inhibition, cathepsin L inhibition, and low-affinity calcium binding. The purified gene product has been shown to inhibit cell attachment and neurite extensions in culture.

View Article and Find Full Text PDF

Testican-1, a secreted proteoglycan enriched in brain, has a single thyropin domain that is highly homologous to domains previously shown to inhibit cysteine proteases. We demonstrate that purified recombinant human testican-1 is a strong competitive inhibitor of the lysosomal cysteine protease, cathepsin L, with a Ki of 0.7 nM, but it does not inhibit the structurally related lysosomal cysteine protease cathepsin B.

View Article and Find Full Text PDF

Testican-1 is a highly conserved, multidomain, chondroitin sulfate proteoglycan that is most abundantly transcribed in the brain by neurons. This testican messenger RNA is not detected in normal quiescent astrocytes, but is up regulated when these cells are activated in response to injury such as cerebral stroke. Other chondroitin sulfate proteoglycans found in glial scars, including neurocan, have been shown to inhibit neural cell attachment and neurite extensions and may thus impede axonal regeneration.

View Article and Find Full Text PDF