Background: We conducted a meta-analysis and qualitative review on the randomized controlled trials investigating the effects of transcranial direct current stimulation and transcranial magnetic stimulation on fear extinction and the return of fear in non-primate animals and humans.
Methods: The meta-analysis was conducted by searching PubMed, Web of science, PsycINFO, and Cochrane Library and extracting fear response in the active and sham groups in the randomized controlled trials. The pooled effect size was quantified by Hedges' g using a three-level meta-analytic model in R.
Kinesin 1 (KIF5) is one major type of motor protein in neurons, but its members' function in the intact brain remains less studied. Using in vivo two-photon imaging, we find that conditional knockout of Kif5b (KIF5B cKO) in CaMKIIα-Cre-expressing neurons shows heightened turnover and lower stability of dendritic spines in layer 2/3 pyramidal neurons with reduced spine postsynaptic density protein 95 acquisition in the mouse cortex. Furthermore, the RNA-binding protein fragile X mental retardation protein (FMRP) is translocated to the proximity of newly formed spines several hours before the spine formation events in vivo in control mice, but this preceding transport of FMRP is abolished in KIF5B cKO mice.
View Article and Find Full Text PDFConsequences of perceptual training, such as improvements in discriminative ability, are highly stimulus and task specific. Therefore, most studies on auditory training-induced plasticity in adult brain have focused on the sensory aspects, particularly on functional and structural effects in the auditory cortex. Auditory training often involves, other than auditory demands, significant cognitive components.
View Article and Find Full Text PDFAdvanced strategies to interconvert cell types provide promising avenues to model cellular pathologies and to develop therapies for neurological disorders. Yet, methods to directly transdifferentiate somatic cells into multipotent induced neural stem cells (iNSCs) are slow and inefficient, and it is unclear whether cells pass through a pluripotent state with full epigenetic reset. We report iNSC reprogramming from embryonic and aged mouse fibroblasts as well as from human blood using an engineered Sox17 (eSox17).
View Article and Find Full Text PDFHearing disorders, such as abnormal speech perception, are frequently reported in individuals with autism. However, the mechanisms underlying these auditory-associated signature deficits in autism remain largely unknown. In this study, we documented significant behavioral impairments in the sound temporal rate discrimination task for rats prenatally exposed to valproic acid (VPA), a well-validated animal model for studying the pathology of autism.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2021
Changes in synaptic connections are believed to underlie long-term memory storage. Previous studies have suggested that sleep is important for synapse formation after learning, but how sleep is involved in the process of synapse formation remains unclear. To address this question, we used transcranial two-photon microscopy to investigate the effect of postlearning sleep on the location of newly formed dendritic filopodia and spines of layer 5 pyramidal neurons in the primary motor cortex of adolescent mice.
View Article and Find Full Text PDFInformation represented by principal neurons in anterior piriform cortex (APC) is regulated by local, recurrent excitation and inhibition, but the circuit mechanisms remain elusive. Two types of layer 2 (L2) principal neurons, semilunar (SL), and superficial pyramidal (SP) cells, are parallel output channels, and the control of their activity gates the output of APC. Here, we examined the hypothesis that recurrent inhibition differentially regulates SL and SP cells.
View Article and Find Full Text PDFSynaptic deficit-induced excitation and inhibition (E/I) imbalance have been implicated in the pathogenesis of schizophrenia. Using in vivo two-photon microscopy, we examined the dynamic plasticity of dendritic spines of pyramidal neurons (PNs) and "en passant" axonal bouton of parvalbumin-expressing interneurons (PVINs) in the frontal association (FrA) cortex in two adolescent mouse models with schizophrenia-like behaviors. Simultaneous imaging of PN dendritic spines and PV axonal boutons showed that repeated exposure to N-methyl-D-aspartate receptor (NMDAR) antagonist MK801 during adolescence disrupted the normal developmental balance of excitatory and inhibitory synaptic structures.
View Article and Find Full Text PDFIt is a great challenge in two-photon microscopy (2PM) to have a high volumetric imaging speed without sacrificing the spatial and temporal resolution in three dimensions (3D). The structure in 2PM images could be reconstructed with better spatial and temporal resolution by the proper choice of the data processing algorithm. Here, we propose a method to reconstruct 3D volume from 2D projections imaged by mirrored Airy beams.
View Article and Find Full Text PDFIn many parts of the nervous system, experience-dependent refinement of neuronal circuits predominantly involves synapse elimination. The role of sleep in this process remains unknown. We investigated the role of sleep in experience-dependent dendritic spine elimination of layer 5 pyramidal neurons in the visual (V1) and frontal association cortex (FrA) of 1-month-old mice.
View Article and Find Full Text PDFThe resolution enhancement over the extended depth of field (DOF) in the volumetric two-photon microscopy (TPM) is demonstrated by utilizing multiple orders of Bessel beams. Here the conventional method of switching laser modes (SLAM) in 2D is introduced to 3D, denoted as the volumetric SLAM (V-SLAM). The equivalent scanning beam in the TPM is a thin needle-like beam, which is generated from the subtraction between the needle-like 0th-order and the straw-like 1st-order Bessel beams.
View Article and Find Full Text PDFCoherent Raman scattering (CRS) microscopy is widely recognized as a powerful tool for tackling biomedical problems based on its chemically specific label-free contrast, high spatial and spectral resolution, and high sensitivity. However, the clinical translation of CRS imaging technologies has long been hindered by traditional solid-state lasers with environmentally sensitive operations and large footprints. Ultrafast fibre lasers can potentially overcome these shortcomings but have not yet been fully exploited for CRS imaging, as previous implementations have suffered from high intensity noise, a narrow tuning range and low power, resulting in low image qualities and slow imaging speeds.
View Article and Find Full Text PDFPerturbation of synapse development underlies many inherited neurodevelopmental disorders including intellectual disability (ID). Diverse mutations on the human TBC1D24 gene are strongly associated with epilepsy and ID. However, the physiological function of TBC1D24 in the brain is not well understood, and there is a lack of genetic mouse model that mimics TBC1D24 loss-of-function for the study of animal behaviors.
View Article and Find Full Text PDFThe kinesin I family of motor proteins are crucial for axonal transport, but their roles in dendritic transport and postsynaptic function are not well-defined. Gene duplication and subsequent diversification give rise to three homologous kinesin I proteins (KIF5A, KIF5B and KIF5C) in vertebrates, but it is not clear whether and how they exhibit functional specificity. Here we show that knockdown of KIF5A or KIF5B differentially affects excitatory synapses and dendritic transport in hippocampal neurons.
View Article and Find Full Text PDFPhysical exercise improves learning and memory, but little in vivo evidence has been provided to illustrate the molecular mechanisms. Here, we show that chronic treadmill exercise activates the mechanistic target of rapamycin (mTOR) pathway in mouse motor cortex. Both ex vivo and in vivo recordings suggest that mTOR activation leads to potentiated postsynaptic excitation and enhanced neuronal activity of layer 5 pyramidal neurons after exercise, in association with increased oligodendrogenesis and axonal myelination.
View Article and Find Full Text PDFChemotherapy-induced cognitive impairment, also known as "chemobrain," is a common side effect. The purpose of this study was to examine whether ginsenoside Rg1, a ginseng-derived compound, could prevent chemobrain and its underlying mechanisms. A mouse model of chemobrain was developed with three injections of docetaxel, adriamycin, and cyclophosphamide (DAC) in combination at a 2-day interval.
View Article and Find Full Text PDFWe demonstrate a volumetric two-photon microscopy (TPM) using the non-diffracting Airy beam as illumination. Direct mapping of the imaging trajectory shows that the Airy beam extends the axial imaging range around six times longer than a traditional Gaussian beam does along the propagation direction, while maintaining a comparable lateral width. Benefiting from its non-diffracting nature, the TPM with Airy beam illumination is able not only to capture a volumetric image within a single frame, but also to acquire image structures behind a strongly scattered medium.
View Article and Find Full Text PDFStress is a major risk factor for the onset of many psychiatric diseases. In rodent models, chronic stress induces depression and impairs excitatory neurotransmission. However, little is known about the effect of stress on synaptic circuitry during the development of behavioral symptoms.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2018
Fear conditioning-induced behavioral responses can be extinguished after fear extinction. While fear extinction is generally thought to be a form of new learning, several lines of evidence suggest that neuronal changes associated with fear conditioning could be reversed after fear extinction. To better understand how fear conditioning and extinction modify synaptic circuits, we examined changes of postsynaptic dendritic spines of layer V pyramidal neurons in the mouse auditory cortex over time using transcranial two-photon microscopy.
View Article and Find Full Text PDFChemotherapy-induced cognitive impairment, often referred to as "chemobrain," is a common side effect. In this study, mice received three intraperitoneal injections of a combination of docetaxel, adriamycin, and cyclophosphamide (DAC) at 2-day intervals. A water maze test was used to examine cognitive performance, and manganese-enhanced magnetic resonance imaging (MEMRI) was used to examine hippocampal neuronal activity.
View Article and Find Full Text PDFYtterbium-doped fiber lasers (YDFLs) working in the near-infrared (NIR) spectral window and capable of high-power operation are popular in recent years. They have been broadly used in a variety of scientific and industrial research areas, including light bullet generation, optical frequency comb formation, materials fabrication, free-space laser communication, and biomedical diagnostics as well. The growing interest in YDFLs has also been cultivated for the generation of high-power femtosecond (fs) pulses.
View Article and Find Full Text PDFHow sleep helps learning and memory remains unknown. We report in mouse motor cortex that sleep after motor learning promotes the formation of postsynaptic dendritic spines on a subset of branches of individual layer V pyramidal neurons. New spines are formed on different sets of dendritic branches in response to different learning tasks and are protected from being eliminated when multiple tasks are learned.
View Article and Find Full Text PDFIt is generally believed that fear extinction is a form of new learning that inhibits rather than erases previously acquired fear memories. Although this view has gained much support from behavioural and electrophysiological studies, the hypothesis that extinction causes the partial erasure of fear memories remains viable. Using transcranial two-photon microscopy, we investigated how neural circuits are modified by fear learning and extinction by examining the formation and elimination of postsynaptic dendritic spines of layer-V pyramidal neurons in the mouse frontal association cortex.
View Article and Find Full Text PDF