Publications by authors named "Cora Randall"

This work evaluates zonal winds in both hemispheres near the polar winter mesopause in the Whole Atmosphere Community Climate Model (WACCM) with thermosphere-ionosphere eXtension combined with data assimilation using the Data Assimilation Research Testbed (DART) (WACCMX+DART). We compare 14 years (2006-2019) of WACCMX+DART zonal mean zonal winds near 90 km to zonal mean zonal winds derived from Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) geopotential height measurements during Arctic mid-winter. 10 years (2008-2017) of WACCMX+DART zonal mean zonal winds are compared to SABER in the Antarctic mid-winter.

View Article and Find Full Text PDF

The work presented here introduces a new data set for inclusion of energetic electron precipitation (EEP) in climate model simulations. Measurements made by the medium energy proton and electron detector (MEPED) instruments onboard both the Polar Orbiting Environmental Satellites and the European Space Agency Meteorological Operational satellites are used to create global maps of precipitating electron fluxes. Unlike most previous data sets, the electron fluxes are computed using both the 0° and 90° MEPED detectors.

View Article and Find Full Text PDF

The January 2022 Hunga Tonga-Hunga Ha'apai eruption was one of the most explosive volcanic events of the modern era, producing a vertical plume that peaked more than 50 km above the Earth. The initial explosion and subsequent plume triggered atmospheric waves that propagated around the world multiple times. A global-scale wave response of this magnitude from a single source has not previously been observed.

View Article and Find Full Text PDF

The energetic particle precipitation (EPP) indirect effect (IE) refers to the downward transport of reactive odd nitrogen (NO = NO + NO) produced by EPP (EPP-NO) from the polar winter mesosphere and lower thermosphere to the stratosphere where it can destroy ozone. Previous studies of the EPP IE examined NO descent averaged over the polar region, but the work presented here considers longitudinal variations. We report that the January 2009 split Arctic vortex in the stratosphere left an imprint on the distribution of NO near the mesopause, and that the magnitude of EPP-NO descent in the upper mesosphere depends strongly on the planetary wave (PW) phase.

View Article and Find Full Text PDF