Publications by authors named "Cora Nijboer"

In term neonates with hypoxic-ischemic encephalopathy (HIE), cerebellar injury is becoming more and more acknowledged. Animal studies demonstrated that Purkinje cells (PCs) are especially vulnerable for hypoxic-ischemic injury. In neonates, however, the extent and pattern of PC injury has not been investigated.

View Article and Find Full Text PDF

Neonatal hypoxic-ischemic (HI) brain injury is a prominent cause of neurological morbidity, urging the development of novel therapies. Interventions with -3 long-chain polyunsaturated fatty acids (-3 LCPUFAs) and mesenchymal stem cells (MSCs) provide neuroprotection and neuroregeneration in neonatal HI animal models. While lysophosphatidylcholine (LPC)-bound -3 LCPUFAs enhance brain incorporation, their effect on HI brain injury remains unstudied.

View Article and Find Full Text PDF

Clinical treatment options to combat Encephalopathy of Prematurity (EoP) are still lacking. We, and others, have proposed (intranasal) mesenchymal stem cells (MSCs) as a potent therapeutic strategy to boost white matter repair in the injured preterm brain. Using a double-hit mouse model of diffuse white matter injury, we previously showed that the efficacy of MSC treatment was time dependent, with a significant decrease in functional and histological improvements after the postponement of cell administration.

View Article and Find Full Text PDF

Neonatal hypoxic-ischemic (HI) brain injury leads to cognitive impairments including social communication disabilities. Current treatments do not sufficiently target these impairments, therefore new tools are needed to examine social communication in models for neonatal brain injury. Ultrasonic vocalizations (USVs) during early life show potential as a measurement for social development and reflect landmark developmental stages in neonatal mice.

View Article and Find Full Text PDF

Background: Hypoxic-Ischemic Encephalopathy (HIE) is a leading cause of mortality and morbidity in newborns. Recent research has shown promise in using intranasal mesenchymal stem cell (MSC) therapy if administered within 10 days after Hypoxia-Ischemia (HI) in neonatal mice. MSCs migrate from the nasal cavity to the cerebral lesion in response to chemotactic cues.

View Article and Find Full Text PDF
Article Synopsis
  • Perinatal arterial ischemic stroke (PAIS) can lead to long-term neurodevelopmental issues, and this study reviews early predictors of outcomes in infants under four months of age.
  • A systematic analysis of 41 studies involving 1395 infants found that MRI assessment of corticospinal tracts and standardized motor assessments are the best predictors of developing cerebral palsy, while techniques like (a)EEG and NIRS may help in predicting cognitive outcomes.
  • The study highlights the need for further research to identify effective predictors for non-motor outcomes, such as behavior and language, after PAIS.
View Article and Find Full Text PDF

Background: Perinatal arterial ischaemic stroke (PAIS) is an important cause of neurodevelopmental disabilities. In this first-in-human study, we aimed to assess the feasibility and safety of intranasally delivered bone marrow-derived allogeneic mesenchymal stromal cells (MSCs) to treat PAIS in neonates.

Methods: In this open-label intervention study in collaboration with all neonatal intensive care units in the Netherlands, we included neonates born at full term (≥36 weeks of gestation) with MRI-confirmed PAIS in the middle cerebral artery region.

View Article and Find Full Text PDF

Rationale: Infants born prematurely risk developing diffuse white matter injury (WMI), which is associated with impaired cognitive functioning and an increased risk of autism spectrum disorder. Recently, our rat model of preterm diffuse WMI induced by combined fetal inflammation and postnatal hypoxia showed impaired motor performance, anxiety-like behaviour and autism-like behaviour in juvenile rats, especially males. Immunohistochemistry showed delayed myelination in the sensory cortex and impaired oligodendrocyte differentiation.

View Article and Find Full Text PDF

Perinatal hypoxia-ischemia (HI) is a major cause of neonatal brain injury, leading to long-term neurological impairments. Medical nutrition can be rapidly implemented in the clinic, making it a viable intervention to improve neurodevelopment after injury. The omega-3 (-3) fatty acids docosahexaenoic acid (DHA, 22:6-3) and eicosapentaenoic acid (EPA, 20:5-3), uridine monophosphate (UMP) and choline have previously been shown in rodents to synergistically enhance brain phospholipids, synaptic components and cognitive performance.

View Article and Find Full Text PDF

Stress has a major impact on the modulation of metabolism, as previously evidenced by hyperglycemia following chronic social defeat (CSD) stress in mice. Although CSD-triggered metabolic dysregulation might predispose to pre-diabetic conditions, insulin sensitivity remained intact, and obesity did not develop, when animals were fed with a standard diet (SD). Here, we investigated whether a nutritional challenge, a high-fat diet (HFD), aggravates the metabolic phenotype and whether there are particularly sensitive time windows for the negative consequences of HFD exposure.

View Article and Find Full Text PDF

Encephalopathy of prematurity (EoP) is a major cause of morbidity in preterm neonates, causing neurodevelopmental adversities that can lead to lifelong impairments. Preterm birth-related insults, such as cerebral oxygen fluctuations and perinatal inflammation, are believed to negatively impact brain development, leading to a range of brain abnormalities. Diffuse white matter injury is a major hallmark of EoP and characterized by widespread hypomyelination, the result of disturbances in oligodendrocyte lineage development.

View Article and Find Full Text PDF

Encephalopathy of Prematurity (EoP) is a major cause of morbidity in (extreme) preterm neonates. Though the majority of EoP research has focused on failure of oligodendrocyte maturation as an underlying pathophysiological mechanism, recent pioneer work has identified developmental disturbances in inhibitory interneurons to contribute to EoP. Here we investigated interneuron abnormalities in two experimental models of EoP and explored the potential of two promising treatment strategies, namely intranasal mesenchymal stem cells (MSCs) or insulin-like growth factor I (IGF1), to restore interneuron development.

View Article and Find Full Text PDF

Chemotherapy-induced peripheral neuropathy (CIPN) is one of the most frequently reported adverse effects of cancer treatment. CIPN often persists long after treatment completion and has detrimental effects on patient's quality of life. There are no efficacious FDA-approved drugs for CIPN.

View Article and Find Full Text PDF

Preclinical studies have shown that mesenchymal stem cells have a positive effect in perinatal brain injury models. The mechanisms that cause these neurotherapeutic effects are not entirely intelligible. Mitochondrial damage, inflammation, and reactive oxygen species are considered to be critically involved in the development of injury.

View Article and Find Full Text PDF
Article Synopsis
  • Encephalopathy of prematurity (EoP) is a common issue in extremely preterm infants, primarily caused by diffuse white matter injury (dWMI) and impaired maturation of oligodendrocytes (OLs).
  • Current treatments for dWMI are lacking, but research indicates that intranasal application of mesenchymal stem cells (MSCs) can enhance neuroregeneration in affected areas of the brain.
  • The study found that intranasal MSCs improve myelination, reduce inflammation, and support OL maturation in a mouse model simulating dWMI, suggesting that MSC therapy could benefit neurodevelopmental outcomes for preterm infants.
View Article and Find Full Text PDF

Background: Postmortem examinations frequently show cerebellar injury in infants with severe hypoxic-ischemic encephalopathy (HIE), while it is less well visible on MRI. The primary aim was to investigate the correlation between cerebellar apparent diffusion coefficient (ADC) values and histopathology in infants with HIE. The secondary aim was to compare ADC values in the cerebellum of infants with HIE and infants without brain injury.

View Article and Find Full Text PDF

Preterm infants are at high risk for Encephalopathy of Prematurity and successive adverse neurodevelopmental outcome. Adequate nutrition is crucial for healthy brain development. Maternal breast milk is first choice of post-natal enteral nutrition for preterm infants.

View Article and Find Full Text PDF

Diffuse white matter injury (dWMI) is a major cause of morbidity in the extremely preterm born infant leading to life-long neurological impairments, including deficits in cognitive, motor, sensory, psychological, and behavioral functioning. At present, no treatment options are clinically available to combat dWMI and therefore exploration of novel strategies is urgently needed. In recent years, the pathophysiology underlying dWMI has slowly started to be unraveled, pointing towards the disturbed maturation of oligodendrocytes (OLs) as a key mechanism.

View Article and Find Full Text PDF

SOX4 has been shown to promote neuronal differentiation both in the adult and embryonic neural progenitors. Ectopic SOX4 expression has also been shown to inhibit oligodendrocyte differentiation in mice, however the underlying molecular mechanisms remain poorly understood. Here we demonstrate that SOX4 regulates transcriptional targets associated with neural development in neural stem cells (NSCs), reducing the expression of genes promoting oligodendrocyte differentiation.

View Article and Find Full Text PDF

Background: Hypoxic-ischemic encephalopathy following perinatal asphyxia is a leading cause of neonatal death and disability worldwide. Treatment with therapeutic hypothermia reduced adverse outcomes from 60 to 45%. Additional strategies are urgently needed to further improve the outcome for these neonates.

View Article and Find Full Text PDF

Subarachnoid hemorrhage (SAH) represents a major health problem in Western society due to high mortality and morbidity, and the relative young age of patients. Currently, efficacious therapeutic options are very limited. Mesenchymal stem cell (MSC) administration has been shown to improve functional outcome and lesion size in experimental models of stroke and neonatal hypoxic-ischemic brain injury.

View Article and Find Full Text PDF

MRI studies (e.g. using diffusion tensor imaging) revealed that injury to white matter tracts, as observed in for instance perinatal white matter injury and multiple sclerosis, leads to compromised microstructure of myelinated axonal tracts.

View Article and Find Full Text PDF

Mutations in FOXP1 have been linked to neurodevelopmental disorders including intellectual disability and autism; however, the underlying molecular mechanisms remain ill-defined. Here, we demonstrate with RNA and chromatin immunoprecipitation sequencing that FOXP1 directly regulates genes controlling neurogenesis. We show that FOXP1 is expressed in embryonic neural stem cells (NSCs), and modulation of FOXP1 expression affects both neuron and astrocyte differentiation.

View Article and Find Full Text PDF

Infants born prematurely are at high risk to develop white matter injury (WMI), due to exposure to hypoxic and/or inflammatory insults. Such perinatal insults negatively impact the maturation of oligodendrocytes (OLs), thereby causing deficits in myelination. To elucidate the precise pathophysiology underlying perinatal WMI, it is essential to fully understand the cellular mechanisms contributing to healthy/normal white matter development.

View Article and Find Full Text PDF