Objectives: The objective of this study was to evaluate composite methacrylate-thiol-ene formulations with varying thiol:ene stoichiometry relative to composite dimethacrylate control formulations. It was hypothesized that the methacrylate-thiol-ene systems would exhibit superior properties relative to the dimethacrylate control resins and that excess thiol relative to ene would further enhance shrinkage and conversion associated properties.
Methods: Polymerization kinetics and functional group conversions were determined by Fourier transform infrared spectroscopy (FTIR).
High molecular weight dimethacrylate systems within composite resins present a number of clinical deficiencies, including insufficient monomer conversion, polymerization shrinkage, and polymerization stresses. This study aimed to determine physical and chemical properties of a new high monomer conversion nanohybrid composite resin based on nano-dimer technology (N'Durance), compared to other principal products on the market. Specimens were polymerized using a visible light lamp following the manufacturers' instructions.
View Article and Find Full Text PDF