Publications by authors named "Coppey-Moisan M"

Chromatin accessibility to protein factors is critical for genome activities. However, the dynamic properties of chromatin higher-order structures that regulate its accessibility are poorly understood. Here, we took advantage of the microenvironment sensitivity of the fluorescence lifetime of EGFP-H4 histone incorporated in chromatin to map in the nucleus of live cells the dynamics of chromatin condensation and its direct interaction with a tail acetylation recognition domain (the double bromodomain module of human TAFII250, dBD).

View Article and Find Full Text PDF

The rigidity of the cell environment can vary tremendously between tissues and in pathological conditions. How this property may affect intracellular membrane dynamics is still largely unknown. Here, using atomic force microscopy, we show that cells deficient in the secretory lysosome v-SNARE VAMP7 are impaired in adaptation to substrate rigidity.

View Article and Find Full Text PDF

Rigidity sensing is a critical determinant of cell fate and behavior but its molecular mechanisms are poorly understood. Focal adhesions (FAs) are complexes that anchor cells to the matrix. Among their components, vinculin undergoes an auto-inhibitory head-tail interaction that regulates the recruitment of, and interactions with its partners in a force-dependent manner.

View Article and Find Full Text PDF

Cytometry is a versatile and powerful method applicable to different fields, particularly pharmacology and biomedical studies. Based on the data obtained, cytometric studies are classified into high-throughput (HTP) or high-content screening (HCS) groups. However, assays combining the advantages of both are required to facilitate research.

View Article and Find Full Text PDF
Article Synopsis
  • Quantitative analysis of Förster resonance energy transfer (FRET) imaging in live cells is complex due to the need for accurate measurement of protein interactions.
  • Fluorescence lifetime imaging microscopy (FLIM) can help determine important parameters like FRET efficiency and donor fraction, but requires a high number of photons, making the process time-consuming.
  • The introduction of a minimal fraction of donor molecules involved in FRET (mfD) offers a more reliable quantitative measure in fast FLIM, balancing the need for precision with quicker data acquisition in dynamic cellular environments.
View Article and Find Full Text PDF

Cell polarization is a fundamental biological process implicated in nearly every aspect of multicellular development. The role of cell-extracellular matrix contacts in the establishment and the orientation of cell polarity have been extensively studied. However, the respective contributions of substrate mechanics and biochemistry remain unclear.

View Article and Find Full Text PDF

Here we combined classical biochemistry with new biophysical approaches to study the organization of glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) with high spatial and temporal resolution at the plasma membrane of polarized epithelial cells. We show that in polarized MDCK cells, after sorting in the Golgi, each GPI-AP reaches the apical surface in homoclusters. Golgi-derived homoclusters are required for their subsequent plasma membrane organization into cholesterol-dependent heteroclusters.

View Article and Find Full Text PDF
Article Synopsis
  • Dual-color Fluorescence Correlation Spectroscopy (FCS) is a technique used to observe protein interactions in live cells by analyzing the fluorescence signals from two different fluorescent proteins.
  • The method grapples with the issue of spectral bleed-through, where overlapping emissions interfere with accurate readings, but Fluorescence Lifetime Correlation Spectroscopy (FLCS) provides a solution.
  • FLCS allows for better analysis of protein interactions without needing extensive bleed-through calibration, and can be executed using various confocal microscopy setups, simplifying the experimental process.
View Article and Find Full Text PDF

The compartmental organization of eukaryotic cells is maintained dynamically by vesicular trafficking. SNARE proteins play a crucial role in intracellular membrane fusion and need to be targeted to their proper donor or acceptor membrane. The molecular mechanisms that allow for the secretory vesicles carrying the v-SNARE TI-VAMP/VAMP7 to leave the cell center, load onto microtubules, and reach the periphery to mediate exocytosis are largely unknown.

View Article and Find Full Text PDF

Epstein-Barr virus (EBV) establishes a life-long latent infection in humans. In proliferating latently infected cells, EBV genomes persist as multiple episomes that undergo one DNA replication event per cell cycle and remain attached to the mitotic chromosomes. EBV nuclear antigen 1 (EBNA-1) binding to the episome and cellular genome is essential to ensure proper episome replication and segregation.

View Article and Find Full Text PDF

New imaging methodologies in quantitative fluorescence microscopy and nanoscopy have been developed in the last few years and are beginning to be extensively applied to biological problems, such as the localization and quantification of protein interactions. Fluorescence resonance energy transfer (FRET) detected by fluorescence lifetime imaging microscopy (FLIM) is currently employed not only in biophysics or chemistry but also in bio-medicine, thanks to new advancements in technology and also new developments in data treatment. FRET-FLIM can be a very useful tool to ascertain protein interactions occurring in single living cells.

View Article and Find Full Text PDF

Dual-color fluorescence correlation spectroscopy is an interesting method to quantify protein interaction in living cells. But, when performing these experiments, one must compensate for a known spectral bleed through artifact that corrupts cross-correlation data. In this article, problems with crosstalk were overcome with an approach based on fluorescence lifetime correlation spectroscopy (FLCS).

View Article and Find Full Text PDF

This paper describes an imaging microscopic technique based on heterodyne digital holography where subwavelength-sized gold colloids can be imaged in cell environments. Surface cellular receptors of 3T3 mouse fibroblasts are labeled with 40 nm gold nanoparticles, and the biological specimen is imaged in a total internal reflection configuration with holographic microscopy. Due to a higher scattering efficiency of the gold nanoparticles versus that of cellular structures, accurate localization of a gold marker is obtained within a 3D mapping of the entire sample's scattered field, with a lateral precision of 5 nm and 100 nm in the x,y and in the z directions respectively, demonstrating the ability of holographic microscopy to locate nanoparticles in living cell environments.

View Article and Find Full Text PDF

We developed a microscope intended to probe, using a parallel heterodyne receiver, the fluctuation spectrum of light quasi-elastically scattered by gold nanoparticles diffusing in viscous fluids. The cutoff frequencies of the recorded spectra scale up linearly with those expected from single-scattering formalism in a wide range of dynamic viscosities (1 to 15 times water viscosity at room temperature). Our scheme enables ensemble-averaged optical fluctuations measurements over multispeckle recordings in low light, at temporal frequencies up to 10 kHz, with a 12 Hz framerate array detector.

View Article and Find Full Text PDF

We report a method based on heterodyne numerical holography associated to photothermal excitation for full field and three-dimensional localisation of metallic nanoparticles. A modulated pump laser (lambda = 532 nm) heats several particles, creating local refractive index changes. This modulation is detected using a probe and a local oscillator beam (lambda = 785 nm), frequency-shifted to create a hologram beating at low frequency.

View Article and Find Full Text PDF
Article Synopsis
  • The fluorescence resonance energy transfer (FRET) technique, combined with fluorescence lifetime imaging microscopy (FLIM), effectively quantifies protein-protein interactions in live cells, using different fluorescent proteins to assess performance.
  • Various FRET couples were tested, revealing that adjustments in donor and acceptor proteins, particularly using mTFP1, improved FRET efficiency by stabilizing fluorescence and reducing complexity in decay profiles.
  • mTFP1 outperformed enhanced green fluorescent protein (EGFP) in several key metrics, such as maintaining constant fluorescence during light exposure and exhibiting a higher fraction of donor engaged in FRET, suggesting it may be a superior choice for future FRET-FLIM experiments.
View Article and Find Full Text PDF

Amphiphysin 1, an endocytic adaptor concentrated at synapses that couples clathrin-mediated endocytosis to dynamin-dependent fission, was also shown to have a regulatory role in actin dynamics. Here, we report that amphiphysin 1 interacts with N-WASP and stimulates N-WASP- and Arp2/3-dependent actin polymerization. Both the Src homology 3 and the N-BAR domains are required for this stimulation.

View Article and Find Full Text PDF

We investigate the dynamic response of single cells to weak and local rigidities, applied at controlled adhesion sites. Using multiple latex beads functionalized with fibronectin, and each trapped in its own optical trap, we study the reaction in real time of single 3T3 fibroblast cells to asymmetrical tensions in the tens of pN x microm(-1) range. We show that the cell feels a rigidity gradient even at this low range of tension, and over time develops an adapted change in the force exerted on each adhesion site.

View Article and Find Full Text PDF

Quantitative analysis in Förster resonance energy transfer (FRET) experiments in live cells for protein interaction studies is still a challenging issue. In a two-component system (FRET and no FRET donor species), fitting of fluorescence lifetime imaging microscopy (FLIM) data gives the fraction of donor molecules involved in FRET (f(D)) and the intrinsic transfer efficiency. But when fast FLIM acquisitions are used to monitor dynamic changes in protein-protein interactions at high spatial and temporal resolutions in living cells, photon statistics and time resolution are limited.

View Article and Find Full Text PDF

We report experimental results on heterodyne holographic microscopy of subwavelength-size gold particles. The apparatus uses continuous green-laser illumination of the metal beads in a total internal reflection configuration for dark-field operation. Detection of the scattered light at the illumination wavelength on a charge-coupled-device array detector enables 3D localization of brownian particles in water.

View Article and Find Full Text PDF

In this chapter, we present the basic physical principles of the fluorescence anisotropy imaging microscopy (FAIM) and its application to study FP-tagged protein dynamics and interaction in live cells. The Förster mechanism of electronic energy transfer can occur between like chromophores (homo-fluorescence resonance energy transfer, homo-FRET) inducing fluorescence depolarization and can be monitored by fluorescence anisotropy. The energy transfer rate is fast compared to the rotational time of proteins, and therefore its detection as a fast depolarization process in the fluorescence anisotropy can be easily discriminated from rotational motion.

View Article and Find Full Text PDF

beta-arrestins (beta-arrs), two ubiquitous proteins involved in serpentine heptahelical receptor regulation and signaling, form constitutive homo- and heterooligomers stabilized by inositol 1,2,3,4,5,6-hexakisphosphate (IP6). Monomeric beta-arrs are believed to interact with receptors after agonist activation, and therefore, beta-arr oligomers have been proposed to represent a resting biologically inactive state. In contrast to this, we report here that the interaction with and subsequent titration out of the nucleus of the protooncogene Mdm2 specifically require beta-arr2 oligomers together with the previously characterized nucleocytoplasmic shuttling of beta-arr2.

View Article and Find Full Text PDF

Fluorescent protein-based FRET is a powerful method for visualizing protein-protein interactions and biochemical reactions in living cells. It can be difficult, however, to avoid photobleaching when observing fluorescent cells under the microscope, especially those expressing CFP. We compared the sensitivity of two protein-based FRET pairs to light-induced fluorescence changes in the donor, on FRET determination by fluorescence lifetime imaging microscopy (FLIM).

View Article and Find Full Text PDF
Article Synopsis
  • A new method is introduced to detect and track moving biological particles in fluorescence microscopy images, focusing on various dynamics and providing detailed analysis such as position and speed.
  • The approach involves a three-stage process including detection using a wavelet transform and future state predictions via an interacting multiple model (IMM) algorithm.
  • Performance validation is conducted using synthetic data, showcasing the method's ability to effectively analyze the 3-D movement of endocytic vesicles with quantum dots.
View Article and Find Full Text PDF

Hutchinson-Gilford progeria syndrome (HGPS) is a dominant autosomal premature aging syndrome caused by the expression of a truncated prelamin A designated progerin (Pgn). A-type and B-type lamins are intermediate filament proteins that polymerize to form the nuclear lamina network apposed to the inner nuclear membrane of vertebrate somatic cells. It is not known if in vivo both type of lamins assemble independently or co-assemble.

View Article and Find Full Text PDF