Publications by authors named "Coppet P"

Background And Objective: There is mounting evidence to suggest that the gut-brain axis is involved in the development of Parkinson's disease (PD). In this regard, the enteroendocrine cells (EEC), which faces the gut lumen and are connected with both enteric neurons and glial cells have received growing attention. The recent observation showing that these cells express alpha-synuclein, a presynaptic neuronal protein genetically and neuropathologically linked to PD came to reinforce the assumption that EEC might be a key component of the neural circuit between the gut lumen and the brain for the bottom-up propagation of PD pathology.

View Article and Find Full Text PDF

We previously demonstrated galactagogue effect of fenugreek in a rat model of lactation challenge, foreshadowing its use in women's breastfeeding management. To assess longitudinal molecular mechanisms involved in milk synthesis/secretion in dams submitted to fenugreek supplementation, inguinal mammary, pituitary glands and plasma were isolated in forty-three rats nursing large 12 pups-litters and assigned to either a control (CTL) or a fenugreek-supplemented (FEN) diet during lactation. RT-PCR were performed at days 12 and 18 of lactation (L12 and L18) and the first day of involution (Inv1) to measure the relative expression of genes related to both milk synthesis and its regulation in the mammary gland and lactogenic hormones in the pituitary gland.

View Article and Find Full Text PDF

Intrauterine growth restriction (IUGR) can affect the structure and function of the intestinal barrier and increase digestive disease risk in adulthood. Using the rat model of maternal dietary protein restriction (8% vs. 20%), we found that the colon of IUGR offspring displayed decreased mRNA expression of epithelial barrier proteins MUC2 and occludin during development.

View Article and Find Full Text PDF

Objective: Experimental studies suggest that maternal hypercholesterolemia may be relevant for the early onset of cardiovascular disease in offspring. We investigated the effect of perinatal hypercholesterolemia on the atherosclerosis development in the offspring of apolipoprotein E-deficient mice and the underlying mechanism.

Approach And Results: Atherosclerosis and related parameters were studied in adult male or female apolipoprotein E-deficient mice offspring from either normocholesterolemic or hypercholesterolemic mothers and normocholesterolemic fathers.

View Article and Find Full Text PDF

Proinflammatory cytokines produced by immune cells play a central role in the increased intestinal epithelial permeability during inflammation. Expansion of visceral adipose tissue (VAT) is currently considered a consequence of intestinal inflammation. Whether VAT per se plays a role in early modifications of intestinal barrier remains unknown.

View Article and Find Full Text PDF

Haemorrhage-induced immunosuppression has been linked to nosocomial infections. We assessed the impact of monophosphoryl lipid A, a Toll/interleukin-1 receptor-domain-containing adaptor protein inducing interferon-biased Toll-like receptor-4 agonist currently used as a vaccine adjuvant in humans, on post-haemorrhage susceptibility to infection. We used a mouse model of post-haemorrhage pneumonia induced by methicillin-susceptible Staphylococcus aureus.

View Article and Find Full Text PDF

Nutrient restriction during gestation and/or suckling is associated with an increased risk of developing inflammation, obesity and metabolic diseases in adulthood. However, the underlying mechanisms, including the role of the small intestine, are unclear. We hypothesized that intestinal adaptation to the diet in adulthood is modulated by perinatal nutrition.

View Article and Find Full Text PDF

Infections are the most frequent cause of complications in trauma patients. Post-traumatic immune suppression (IS) exposes patients to pneumonia (PN). The main pathogen involved in PN is Methicillin Susceptible Staphylococcus aureus (MSSA).

View Article and Find Full Text PDF

Background & Aims: Little is known about the environmental and nutritional regulation of the enteric nervous system (ENS), which controls gastrointestinal motility. Short-chain fatty acids (SCFAs) such as butyrate regulate colonic mucosa homeostasis and can modulate neuronal excitability. We investigated their effects on the ENS and colonic motility.

View Article and Find Full Text PDF

The short-chain fatty acid butyrate, which is mainly produced in the lumen of the large intestine by the fermentation of dietary fibers, plays a major role in the physiology of the colonic mucosa. It is also the major energy source for the colonocyte. Numerous studies have reported that butyrate metabolism is impaired in intestinal inflamed mucosa of patients with inflammatory bowel disease (IBD).

View Article and Find Full Text PDF

Background: Antigenic profiles obtained by ELISA with IgE from patients with wheat food allergy (WFA) established that major allergens are albumins/globulins (AG) for children suffering from atopic eczema/dermatitis syndrome (AEDS), omega5-gliadins for adults suffering from wheat-dependent exercise-induced anaphylaxis (WDEIA), anaphylaxis or urticaria and low-molecular-weight (LMW) glutenin subunits for patients with anaphylaxis. We aimed to characterize a new mast cell transfectant for its ability to degranulate with wheat proteins and patient sera and compare these results to those obtained by ELISA.

Methods: Thirty sera from patients with WFA were tested: 14 with AEDS (group 1) and 16 with WDEIA, anaphylaxis or urticaria (group 2).

View Article and Find Full Text PDF

Background & Aims: Butyrate oxidation is impaired in intestinal mucosa of patients with inflammatory bowel diseases (IBD). Butyrate uptake by colonocytes involves the monocarboxylate transporter (MCT) 1. We aimed to investigate the role of MCT1 in butyrate oxidation deficiency during colonic inflammation.

View Article and Find Full Text PDF

Colonic mucosal protection is provided by mucous gel, mainly composed of secreted (Muc2) and membrane-bound (Muc1, Muc3, Muc4) mucins. Our aim was to determine the expression profile of secreted and membrane-bound mucins in experimental dextran sulfate sodium (DSS)-induced colitis. Acute colitis was induced in Balb/C mice by oral administration of 1.

View Article and Find Full Text PDF

A quantitative method based on a real-time PCR assay to enumerate Listeria monocytogenes in biofilms was developed. The specificity for L. monocytogenes of primers targeting the listeriolysin gene was demonstrated using a SYBR Green I real-time PCR assay.

View Article and Find Full Text PDF

The mucus layer covering the gastrointestinal mucosa is considered the first line of defense against aggressions arising from the luminal content. It is mainly composed of high molecular weight glycoproteins called mucins. Butyrate, a short-chain fatty acid produced during carbohydrate fermentation, has been shown to increase mucin secretion.

View Article and Find Full Text PDF

Mel 1a melatonin receptors belong to the super-family of guanine nucleotide-binding regulatory protein (G protein)-coupled receptors. So far, interest in Mel 1a receptor signaling has focused mainly on the modulation of the adenylyl cyclase pathway via pertussis toxin (PTX)-sensitive G proteins. To further investigate signaling of the human Mel 1a receptor, we have developed an antibody directed against the C terminus of this receptor.

View Article and Find Full Text PDF

Melatonin receptors belong to the superfamily of G protein-coupled receptors. Cloning of Mel1c receptors expressed in Xenopus skin revealed the existence of a polymorphism for these receptors. Heterologous expression of the two allelic isoforms, called Mel1c(alpha) and Mel1c(beta), indicated functional differences in their signalling properties.

View Article and Find Full Text PDF

Cyclic guanosine 3'-5'-monophosphate (cGMP) has recently been shown to constitute a second messenger for Xenopus laevis melatonin Mel1c receptors. To verify whether cGMP levels are also modulated by mammalian melatonin receptors, we cloned the genes encoding the human Mel1a and Mel1b receptor subtypes and expressed them in human embryonic kidney cells. Pharmacological profiles and inhibition of forskolin-stimulated adenosine 3'-5'-cyclic monophosphate levels by melatonin confirmed functional expression of high-affinity melatonin receptors.

View Article and Find Full Text PDF

Human copper-zinc superoxide dismutase (Cu,Zn-SOD) participates in the control of reactive oxygen intermediate intracellular concentration. In this study, we show that phorbol 12-myristate 13-acetate (PMA) increases Cu,Zn-SOD mRNA expression within 30 min. The sequence between nucleotides -71 and -29 is essential for both basal and PMA-induced gene expression.

View Article and Find Full Text PDF

Melatonin receptors belong to the super-family of G protein-coupled receptors. They modulate a large spectrum of physiological functions including regulation of circadian rhythms and seasonal reproduction. Pharmacological evidence suggests the expression of two types of receptors, called Mel1 and Mel2.

View Article and Find Full Text PDF

Activation of adenylyl cyclase by beta-adrenergic receptors (betaARs) plays a major role in adipose tissue homeostasis. The increase in cAMP promotes lipolysis in white adipose tissue, activates both thermogenesis and lipolysis in brown adipose tissue (BAT), and induces BAT hypertrophy. Previous studies indicated that among the three betaAR subtypes present in adipose tissue, beta3AR could be a potential target for antiobesity treatments in humans.

View Article and Find Full Text PDF

Two cDNAs encoding novel isoforms of Xenopus laevis melatonin receptors were cloned using PCR primers specific for the X. laevis-melanophore Mel1c melatonin receptor described in a recent publication. The novel isoforms were highly homologous to the described frog Mel1c cDNA, although the C-terminal tail of both was shorter by 65 amino acid residues.

View Article and Find Full Text PDF

We investigated the transcriptional regulation of cytochrome P450 1A1 (CYP1A1) gene in human lymphoblastoid B cells and report that a high inducibility of CYP1A1 gene transcription by 2,3,7,8-tetrachlorodibenzo-p-dioxin is associated with glutathione S-transferase M1 (GSTM1) null genotype, whereas the presence of at least one GSTM1 allele is correlated with induction of only low levels of CYP1A1 mRNA by 2,3,7,8-tetrachlorodibenzo-p-dioxin. These data underline the major importance of the CYP1A1 inducibility phenotype associated with the homozygous GSTM1 null genotype in chemically induced cancers.

View Article and Find Full Text PDF