The localized deformation of molecular monolayers constrained between the spherical surfaces of Au nanoparticles is studied by means of molecular dynamics simulations. Alkyl or polyethylene glycol long-chain molecules were homogeneously distributed over the curved Au surface, pushed against each other by repeated cycles of force relaxation and constant-volume equilibration at temperatures increasing from 50 to 300 K before being slowly quenched to near-zero temperature. Plots of minimum configurational energy can be obtained as a function of the nanoparticle distance, according to different directions of approach; therefore, such simulations describe a range of deformations, from perfectly uniaxial compression to a combination of compression and shear.
View Article and Find Full Text PDFInterfacial waters are increasingly appreciated as playing a key role in protein-protein interactions. We report on a study of the prediction of interfacial water positions by both Molecular Dynamics and explicit solvent-continuum electrostatics based on the Dipolar Poisson-Boltzmann Langevin (DPBL) model, for three test cases: (i) the barnase/barstar complex (ii) the complex between the DNase domain of colicin E2 and its cognate Im2 immunity protein and (iii) the highly unusual anti-freeze protein Maxi which contains a large number of waters in its interior. We characterize the waters at the interface and in the core of the Maxi protein by the statistics of correctly predicted positions with respect to crystallographic water positions in the PDB files as well as the dynamic measures of diffusion constants and position lifetimes.
View Article and Find Full Text PDFNanoparticle assemblies with thiol-terminated alkyl chains are studied by conducting atomic force microscopy (c-AFM) regarding their use as strain gauges for touch-sensitive panels. Current-force spectroscopy is used as a characterization tool complementary to the macroscopic setup since it allows a bias to be applied to a limited number of junctions, overcoming the Coulomb blockade energy and focusing on the contact electromechanics and the transport mechanism across the ligand. First, transition voltage spectroscopy is applied with varying force to target the underlying tunneling mechanism by observing whether the transition between the ohmic and exponential current-voltage behavior is force-dependent.
View Article and Find Full Text PDFHigh-density packing in organic crystals is usually associated with an increase of the coordination between molecules. Such a concept is not necessarily extended to two-dimensional molecular networks self-assembled on a solid surface, for which we demonstrate the key role of the surface in inducing the optimal packing. By a combination of scanning tunneling microscopy experiments and multiscale computer simulations, we study the phase transition between two polymorphs.
View Article and Find Full Text PDF