Publications by authors named "Copello G"

In this work, the mechanical properties of hydrogels based on linear polyethyleneimine (PEI) chemically crosslinked with ethyleneglycoldiglycidyl ether (EGDE) were improved by the ionic crosslinking with sodium tripolyphosphate (TPP). To this end, the quaternization of the nitrogen atoms present in the PEI structure was conducted to render a network with a permanent positive charge to interact with the negative charges of TPP. The co-crosslinking process was studied by H high-resolution magic angle spinning (H HRMAS) NMR and X-ray photoelectron spectroscopy (XPS) in combination with organic elemental analysis and inductively coupled plasma mass spectrometry (ICP-MS).

View Article and Find Full Text PDF

With the urge to reduce the use of petroleum-based materials, the aim of this work is to valorize biowaste to develop smart films through a sustainable fabrication way. In this regard, choline chloride/urea (1:2) deep eutectic solvent (DES) at different concentrations (25, 40, 50 and 75 wt%) was used to dissolve cow horn, used as reinforcement agent in soy protein films. The film fabrication was carried out by compression molding, a fast and cost-effective.

View Article and Find Full Text PDF

This research explores the integration of DUT-67 metal organic frameworks into polyethyleneimine-based hydrogels to assemble a composite system with enough mechanical strength, pore structure and chemical affinity to work as a sorbent for water remediation. By varying the solvent-to-modulator ratio in a water-based synthesis path, the particle size of DUT-67 was successfully modulated from 1 μm to 200 nm. Once DUT-67 particles were integrated into the polymeric hydrogel, the composite hydrogel exhibited enhanced mechanical properties after the incorporation of the MOF filler.

View Article and Find Full Text PDF

Poly(3-hydroxybutyrate), PHB, is a hydrophobic biopolymer with good mechanical and barrier properties. However, neat PHB is a semicrystalline polymer with a relative high degree of crystallinity and poor film properties. In this work, this biopolymer was plasticized with glycerol tributyrate and functionalized with copper (II) sulfate, allowing us to obtain biodegradable antimicrobial flexible films.

View Article and Find Full Text PDF

The tropane alkaloids hyoscyamine, anisodamine, and scopolamine are extensively used medicines. In particular, scopolamine has the greatest value in the market. Hence, strategies to enhance its production have been explored as an alternative to traditional field-plant cultivation.

View Article and Find Full Text PDF

Collection and mechanical recycling of post-consumer flexible polypropylene packaging is limited, principally due to polypropylene being very light-weight. Moreover, service life and thermal-mechanical reprocessing degrade PP and change its thermal and rheological properties according to the structure and provenance of recycled PP. This work determined the effect of incorporating two fumed nanosilica (NS) types on processability improvement of post-consumer recycled flexible polypropylene (PCPP) through ATR-FTIR, TGA, DSC, MFI and rheological analysis.

View Article and Find Full Text PDF

The food industry has a current challenge of increasing the recycling of post-consumer plastics to reduce plastic waste towards a circular economy, especially flexible polypropylene, which is highly demanded in food packaging. However, recycling post-consumer plastics is limited because service life and reprocessing degrade their physical-mechanical properties and modify the migration of components from the recycled material to the food. This research evaluated the feasibility of valorization of post-consumer recycled flexible polypropylene (PCPP) by incorporating fumed nanosilica (NS).

View Article and Find Full Text PDF

An ultrasound assisted solid phase extraction method using rotating cigarette filter is developed herein to preconcentrate and determine trace amount of bisphenol in source and drinking water. Qualitative and quantitative measurements were performed using high-performance liquid chromatography coupled with ultra violet detector. Sorbent-analyte interactions were thoroughly investigated computationally and experimentally using molecular dynamics simulations; and attenuated total reflectance Fourier transform infrared spectroscopy, and Raman spectroscopy, respectively.

View Article and Find Full Text PDF

Computationally and spectroscopically assisted analytical comparative investigation into the extraction of bisphenol A using three cyclodextrins, that is, α, β, and γ respectively, were performed. A simple, self-tailored μ-solid-phase extraction podium was used to extract bisphenol A from water samples, and high-performance liquid chromatography-ultraviolet was used for the qualitative and quantitative analysis of bisphenol A. Density functional theory first principle calculations, attenuated total reflectance Fourier-transform infrared spectroscopy and Fourier-transform Raman spectroscopy data supports the analytical selection of β-cyclodextrin as the adsorbent for bisphenol A extraction.

View Article and Find Full Text PDF

Multidrug resistance (MDR) transporters present in placenta and fetal tissues reduce intracellular accumulation of their substrates. Consequently, induction of protein expression may further reduce toxic effects of specific xenobiotics. This work aimed to study whether sustained drug treatments in utero could modulate MDR transporters P-gp, BCRP, and MRP2 and thus impact their fetoprotective action.

View Article and Find Full Text PDF

Composites based on chitin (CH) biopolymer and metal-organic framework (MOF) microporous nanoparticles have been developed as broad-scope pollutant absorbent. Detailed characterization of the CH/MOF composites revealed that the MOF nanoparticles interacted through electrostatic forces with the CH matrix, inducing compartmentalization of the CH macropores that led to an overall surface area increase in the composites. This created a micro-, meso-, and macroporous structure that efficiently retained pollutants with a broad spectrum of different chemical natures, charges, and sizes.

View Article and Find Full Text PDF

In this work, the influence of Sodium Acetate Trihydrate (SAT) on the gelling stage of a chitin hydrogel was studied. Characterization techniques, such as FTIR, Raman, solid-state NMR, Dielectric Spectroscopy, Small-angle X-ray scattering (SAXS), Wide-angle X-ray scattering (WAXS), and X-ray diffraction (XRD) were used to study the effect of SAT on the micro and nanostructure of the material in the wet, dry and freeze-dried states. It was demonstrated that the amount of SAT in the gelling solution can induce a variation in the supramolecular interaction among the polysaccharide chains, which leads to a change in the structural characteristics.

View Article and Find Full Text PDF

Forage legumes are an important livestock nutritional resource, which includes essential metals, such as copper. Particularly, the high prevalence of hypocuprosis causes important economic losses to Argentinian cattle agrosystems. Copper deficiency in cattle is partially due to its low content in forage produced by natural grassland, and is exacerbated by flooding conditions.

View Article and Find Full Text PDF

The goal of this work was to investigate biophysical stability of iron-pectin nanoparticles and analyze the feasibility of using them as delivery systems for the probiotic strain Lactobacillus plantarum CIDCA 83114. Iron oxide (FeO) nanoparticles were synthesized from 0.25M FeCl/0.

View Article and Find Full Text PDF

A smart antibacterial biomaterial based on a keratin hydrogel with pH-dependent behavior and Zinc Oxide nanoplates as biocide agent has been developed. The pH of a chronic wound is basic due to bacterial metabolism. Originally shrank at acid pH, keratin hydrogels swell upon contact with a bacterial contaminated media leading to the release of the nanoparticles.

View Article and Find Full Text PDF

A novel nanostructured material was successfully developed by combining a chitin matrix with graphene oxide nanosheets (Chi:nGO) and then used for the continuous flow adsorption of ciprofloxacin. The spectroscopic characterization indicated that none covalent interaction between both components would be occurring and the introduction of nGO did not interfere in chitin nanostructure rearrangement during gelling and later drying. SEM images and Mercury Intrusion Porosimetry results showed a wide pore size distribution ranging from nano to micrometers.

View Article and Find Full Text PDF

Safety concerns for fetus development of zidovudine (AZT) administration as prophylaxis of vertical transmission of HIV persist. We evaluated the participation of the ATP-binding cassette efflux transporter ABCG2 in the penetration of AZT into the fetal brain and the relevance for drug safety. Oral daily doses of AZT (60mg/kg body weight) or its vehicle were administered between post gestational days 11 (E11) and 20 (E20) to Sprague-Dawley pregnant rats.

View Article and Find Full Text PDF

Protein based hydrogels are a very interesting type of biomaterials with many probed strengths related to their source and chemical structure. Biocompatibility and biodegradability are accompanied by affordability when it comes to low cost sources. The main keratin source is agroindustrial waste, such as feathers, horns, hooves, hair and wool.

View Article and Find Full Text PDF

In order to obtain an antimicrobial gel, a starch-based hydrogel reinforced with silica-coated copper nanoparticles (Cu NPs) was developed. Cu NPs were synthesized by use of a copper salt and hydrazine as a reducing agent. In order to enhance Cu NP stability over time, they were synthesized in a starch medium followed by a silica coating.

View Article and Find Full Text PDF

We present a brief survey of some of the recent work of Professor Luis E. Díaz, performed together with his students and collaborators at the University of Buenos Aires. Dr Luis E.

View Article and Find Full Text PDF

Previous studies by our group demonstrated the key role of iron in Schwann cell maturation through an increase in cAMP, PKA activation and CREB phosphorylation. These studies opened the door to further research on non-transferrin-bound iron uptake, which revealed the presence of DMT1 mRNA all along SC progeny, hinting at a constitutive role of DMT1 in ensuring the provision of iron in the PNS. In light of these previous results, the present work evaluates the participation of DMT1 in the remyelination process following a demyelinating lesion promoted by sciatic nerve crush--a reversible model of Wallerian degeneration.

View Article and Find Full Text PDF