In previous studies of septal heart muscle from HCM patients with hypertrophic obstructive cardiomyopathy (HOCM, LVOT gradient 50-120 mmHg) we found that the level of phosphorylation of troponin I (TnI) and myosin binding protein C (MyBP-C) was extremely low yet samples from hearts with HCM or DCM mutations that did not have pressure overload were similar to donor heart controls. We therefore investigated heart muscle samples taken from patients undergoing valve replacement for aortic stenosis, since they have pressure overload that is unrelated to inherited cardiomyopathy. Thirteen muscle samples from septum and from free wall were analyzed (LVOT gradients 30-100 mmHg) The levels of TnI and MyBP-C phosphorylation were determined in muscle myofibrils by separating phosphospecies using phosphate affinity SDS-PAGE and detecting with TnI and MyBP-C specific antibodies.
View Article and Find Full Text PDFA correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.
View Article and Find Full Text PDFDilated cardiomyopathy (DCM) is an important cause of heart failure. Single gene mutations in at least 50 genes have been proposed to account for 25-50% of DCM cases and up to 25% of inherited DCM has been attributed to truncating mutations in the sarcomeric structural protein titin (TTNtv). Whilst the primary molecular mechanism of some DCM-associated mutations in the contractile apparatus has been studied in vitro and in transgenic mice, the contractile defect in human heart muscle has not been studied.
View Article and Find Full Text PDFHypertrophic cardiomyopathy (HCM) is the most common single gene inherited cardiomyopathy. In cats () HCM is even more prevalent and affects 16% of the outbred population and up to 26% in pedigree breeds such as Maine Coon and Ragdoll. Homozygous mutations have been identified in these breeds but the mutations in other cats are unknown.
View Article and Find Full Text PDFBackground: Myocardial infarction is diagnosed when biomarkers of cardiac necrosis exceed the 99th centile, although guidelines advocate even lower concentrations for early rule-out. We examined how many myocytes and how much myocardium these concentrations represent. We also examined if dietary troponin can confound the rule-out algorithm.
View Article and Find Full Text PDFMyocardial remodeling in response to chronic myocardial infarction (CMI) progresses through two phases, hypertrophic "compensation" and congestive "decompensation." Nothing is known about the ability of uninfarcted myocardium to produce force, velocity, and power during these clinical phases, even though adaptation in these regions likely drives progression of compensation. We hypothesized that enhanced cross-bridge-level contractility underlies mechanical compensation and is controlled in part by changes in the phosphorylation states of myosin regulatory proteins.
View Article and Find Full Text PDFBackground: Studies of the functional consequences of DCM-causing mutations have been limited to a few cases where patients with known mutations had heart transplants. To increase the number of potential tissue samples for direct investigation we performed whole exon sequencing of explanted heart muscle samples from 30 patients that had a diagnosis of familial dilated cardiomyopathy and screened for potentially disease-causing mutations in 58 HCM or DCM-related genes.
Results: We identified 5 potentially disease-causing OBSCN mutations in 4 samples; one sample had two OBSCN mutations and one mutation was judged to be not disease-related.
Phosphorylation of troponin I by protein kinase A (PKA) reduces Ca(2+) sensitivity and increases the rate of Ca(2+) release from troponin C and the rate of relaxation in cardiac muscle. In vitro experiments indicate that mutations that cause dilated cardiomyopathy (DCM) uncouple this modulation, but this has not been demonstrated in an intact contractile system. Using a Ca(2+)-jump protocol, we measured the effect of the DCM-causing mutation ACTC E361G on the equilibrium and kinetic parameters of Ca(2+) regulation of contractility in single transgenic mouse heart myofibrils.
View Article and Find Full Text PDFWe determined the isoforms of tropomyosin expressed and the level of tropomyosin phosphorylation in donor, end-stage failing and hypertrophic obstructive cardiomyopathy samples of human heart muscle. Western blots and isoform-specific antibodies showed that α-tropomyosin was the only significant isoform expressed and that tropomyosin was 25-30% phosphorylated at serine 283. Mass spectrometry confirmed directly that α-tropomyosin made up over 95% of tropomyosin but also indicated the presence of up to 4% κ-tropomyosin and much smaller amounts of β-, γ- and smooth β-tropomyosin and about 26% phosphorylation.
View Article and Find Full Text PDFAims: We studied the relationship between myofilament Ca(2+) sensitivity and troponin I (TnI) phosphorylation by protein kinase A at serines 22/23 in human heart troponin isolated from donor hearts and from myectomy samples from patients with hypertrophic obstructive cardiomyopathy (HOCM).
Methods And Results: We used a quantitative in vitro motility assay. With donor heart troponin, Ca(2+) sensitivity is two- to three-fold higher when TnI is unphosphorylated.
It is well established that MYBPC3 mutations are the most common cause of hypertrophic cardiomyopathy, accounting for about half of identified mutations. However, when compared with mutations in other myofibrillar proteins that cause hypertrophic cardiomyopathy, MYBPC3 mutations seem to be the odd one out. The most striking characteristic of HCM mutations in MYBPC3 is that many are within introns and are predicted to cause aberrant splicing leading to a frameshift and a premature chain termination, yet the truncated peptides have never been identified in human heart tissue carrying these mutations.
View Article and Find Full Text PDFWe generated a transgenic mouse model expressing the apical hypertrophic cardiomyopathy-causing mutation ACTC E99K at 50% of total heart actin and compared it with actin from patients carrying the same mutation. The actin mutation caused a higher Ca(2+) sensitivity in reconstituted thin filaments measured by in vitro motility assay (2.3-fold for mice and 1.
View Article and Find Full Text PDFA unique feature of MyBP-C in cardiac muscle is that it has multiple phosphorylation sites. MyBP-C phosphorylation, predominantly by PKA, plays an essential role in modulating contractility as part of the cellular response to β-adrenergic stimulation. In vitro studies indicate MyBP-C can be phosphorylated at Serine 273, 282, 302 and 307 (mouse sequence) but little is known about the level of MyBP-C phosphorylation or the sites phosphorylated in heart muscle.
View Article and Find Full Text PDFWe have developed a quantitative antibody-based assay to measure the content of skeletal muscle alpha-actin relative to cardiac alpha-actin. We found 21 +/- 2% skeletal muscle alpha-actin content in normal heart muscle of adult man and mouse. In end stage failing heart 53 +/- 5% of striated actin was skeletal muscle alpha-actin and in samples of inter-ventricular septum from patients with hypertrophic obstructive cardiomyopathy (HOCM) skeletal muscle alpha-actin was 72 +/- 2% of sarcomeric actin.
View Article and Find Full Text PDFRationale: Most sarcomere gene mutations that cause hypertrophic cardiomyopathy are missense alleles that encode dominant negative proteins. The potential exceptions are mutations in the MYBPC3 gene (encoding cardiac myosin-binding protein-C [MyBP-C]), which frequently encode truncated proteins.
Objective: We sought to determine whether there was evidence of haploinsufficiency in hypertrophic cardiomyopathy caused by MYBPC3 mutations by comparing left ventricular muscle from patients undergoing surgical myectomy with samples from donor hearts.
Phosphorylation of myosin binding protein C (MyBP-C) was investigated in intraventricular septum samples taken from patients with hypertrophic cardiomyopathy undergoing surgical septal myectomy. These samples were compared with donor heart muscle, as a well-characterised control tissue, and with end-stage failing heart muscle. MyBP-C was partly purified from myofibrils using a modification of the phosphate-EDTA extraction of Hartzell and Glass.
View Article and Find Full Text PDFE40K and E54K mutations in alpha-tropomyosin cause inherited dilated cardiomyopathy. Previously we showed, using Ala-Ser alpha-tropomyosin (AS-alpha-Tm) expressed in Escherichia coli, that both mutations decrease Ca(2+) sensitivity. E40K also reduces V(max) of actin-Tm-activated S-1 ATPase by 18%.
View Article and Find Full Text PDFThis study examined the relationship between HIV serostatus disclosure and adherence to antiretroviral therapy (ART). The study was conducted with 215 HIV-seropositive patients who demonstrated poor adherence (<80%) and who were in serodiscordant relationships. Participants completed self-report measures regarding HIV serostatus disclosure and reasons for missing ART doses, as well as electronic monitoring of ART adherence (MEMS caps).
View Article and Find Full Text PDFPolarized fluorimetry technique and ghost muscle fibers containing tropomyosin were used to study effects of caldesmon (CaD) and recombinant peptides CaDH1 (residues 506-793), CaDH2 (residues 683-767), CaDH12 (residues 506-708) and 658C (residues 658-793) on the orientation and mobility of fluorescent label 1.5-IAEDANS specifically bound to Cys-707 of myosin subfragment-1 (S1) in the absence of nucleotide, and in the presence of MgADP, MgAMP-PNP, MgATPgammaS or MgATP. It was shown that at modelling different intermediates of actomyosin ATPase, the orientation and mobility of dye dipoles changed discretely, suggesting a multi-step changing of the myosin head structural state in ATP hydrolysis cycle.
View Article and Find Full Text PDFInt J Biochem Cell Biol
December 2001
Caldesmon is a component of the thin filaments of smooth muscles where it is believed to play an essential role in regulating the thin filaments' interaction with myosin and hence contractility. We studied the effects of caldesmon and two recombinant fragments CaDH1 (residues 506-793) and CaDH2 (residues 683-767) on the structure of actin-tropomyosin by making measurements of the fluorescence polarisation of probes specifically attached to actin. CaDH1, like the parent molecule caldesmon, is an inhibitor of actin-tropomyosin interaction with myosin whilst CaDH2 is an activator.
View Article and Find Full Text PDFTRITC-phalloidin or FITC-labeled F-actin of ghost muscle fibers was bound to tropomyosin and C-terminal recombinant fragments of caldesmon CaDH1 (residues 506-793) or CaDH2 (residues 683-767). After that the fibers were decorated with myosin subfragment 1. In the absence of caldesmon fragments, subfragment 1 interaction with F-actin caused changes in parameters of polarized fluorescence, that were typical of "strong" binding of myosin heads to F-actin and of the "switched on" conformational state of actin.
View Article and Find Full Text PDFThe ability of caldesmon to inhibit actomyosin ATPase activity involves the interaction of three nonsequential segments of caldesmon domain 4 (amino acids 600-756) with actin. Two of these contacts are located in the C-terminal half of this region of caldesmon which has been designated domain 4b (658-756). To investigate the spatial relationship between the two sites and to determine whether their corresponding contacts on actin are sequentially distinct, we have used NMR spectroscopy to compare the actin binding properties of the minimal inhibitory peptide LW30 comprising residues 693-722 with those of the recombinant domain 4b constructs 658C (658-756) and Cg1 (a mutant of 658C in which the sequence (691)Glu-Trp-Leu-Thr-Lys-Thr(696) is changed to Pro-Gly-His-Tyr-Asn-Asn).
View Article and Find Full Text PDFThe basic structure and functional properties of smooth muscle thin filaments were established about 10 years ago. Since then we and others have been working on the details of how tropomyosin, caldesmon and the Ca(2+)-binding protein regulate actin interaction with myosin. Our work has tended to emphasize the similarities between caldesmon and troponin function whilst others have been more concerned with the differences.
View Article and Find Full Text PDFRecent analysis has shown the presence of three sequences in the C-terminal 170 amino acids of human caldesmon (domain 4) which are involved in actin binding and tropomyosin-dependent inhibition of actomyosin ATPase. Two are in domain 4b (amino acids 715-793) and one is in domain 4a (amino acids 636-714). In the present work we have compared recombinant peptides containing either domain 4a or domain 4b to address the question as to whether domain 4a alone has any inhibitory activity.
View Article and Find Full Text PDFWe have used isotope-edited nuclear magnetic resonance spectroscopy, binding studies, and ATPase activity assays to investigate the interaction with F-actin of the 10 kDa C-terminal 658C fragment of chicken gizzard caldesmon and two site-directed mutants of this fragment. Simultaneous dual-sited contacts with F-actin are observed for the segments of the 658C sequence flanking tryptophan residues 692 and 722. Competition experiments showed that both 658C contacts with actin are displaced by substoichiometric concentrations of the short inhibitory region of troponin-I indicative of different binding sites on actin for these regions of troponin-I and caldesmon.
View Article and Find Full Text PDF