Am J Physiol Heart Circ Physiol
August 2024
The maternal cardiovascular system undergoes functional and structural adaptations during pregnancy and postpartum to support increased metabolic demands of offspring and placental growth, labor, and delivery, as well as recovery from childbirth. Thus, pregnancy imposes physiological stress upon the maternal cardiovascular system, and in the absence of an appropriate response it imparts potential risks for cardiovascular complications and adverse outcomes. The proportion of pregnancy-related maternal deaths from cardiovascular events has been steadily increasing, contributing to high rates of maternal mortality.
View Article and Find Full Text PDFBacterial infections and impaired circulating mitochondrial DNA dynamics are associated with adverse pregnancy outcomes. Unmethylated cytosine-guanine dinucleotide (CpG) motifs are common in bacterial and mitochondrial DNA and act as potent immunostimulators. We tested the hypothesis that exposure to CpG oligonucleotides (ODN) during pregnancy would disrupt blood pressure circadian rhythms and placental molecular clock network, mediating aberrant fetoplacental growth dynamics.
View Article and Find Full Text PDFMitochondrial dysfunction has been implicated in pregnancy-induced hypertension (PIH). The role of mitochondrial gene dysregulation in PIH, and consequences for maternal-fetal interactions, remain elusive. Here, we investigated mitochondrial gene expression and dysregulation in maternal and placental tissues from pregnancies with and without PIH; further, we measured circulating mitochondrial DNA (mtDNA) mutational load, an index of mtDNA integrity.
View Article and Find Full Text PDFBacterial infections and impaired mitochondrial DNA dynamics are associated with adverse pregnancy outcomes. Unmethylated cytosine-guanine dinucleotide (CpG) motifs are common in bacterial and mitochondrial DNA and act as potent immunostimulators. Here, we tested the hypothesis that exposure to CpG oligonucleotides (ODN) during pregnancy would disrupt blood pressure circadian rhythms and the placental molecular clock machinery, mediating aberrant fetoplacental growth dynamics.
View Article and Find Full Text PDFBackground Circulating cell-free mitochondrial DNA (ccf-mtDNA) is a damage-associated molecular pattern that reflects cell stress responses and tissue damage, but little is known about ccf-mtDNA in preeclampsia. The main objectives of this study were to determine (1) absolute concentrations of ccf-mtDNA in plasma and mitochondrial DNA content in peripheral blood mononuclear cells and (2) forms of ccf-mtDNA transport in blood from women with preeclampsia and healthy controls. In addition, we sought to establish the association between aberrance in circulating DNA-related metrics, including ccf-mtDNA and DNA clearance mechanisms, and the clinical diagnosis of preeclampsia using bootstrapped penalized logistic regression.
View Article and Find Full Text PDFUterine perivascular adipose tissue (PVAT) contributes to uterine blood flow regulation in pregnancy, at least in part, due to its effects on uterine artery reactivity. We tested the hypothesis that uterine PVAT modulates the balance between the contribution of nitric oxide synthase (NOS)- and cyclooxygenase (COX)-dependent pathways to acetylcholine (ACh)-induced relaxation in isolated uterine arteries. Concentration-response curves to ACh (1 nM - 30 µM) were performed on uterine arteries from pregnant and non-pregnant rats.
View Article and Find Full Text PDFHistorically mechanisms with which basal animals such as reef-building corals use to respond to changing and increasingly stressful environments have remained elusive. However, the increasing availability of genomic and transcriptomic data from these organisms has provided fundamental insights into the biology of these critically important ecosystem engineers. Notably, insights into cnidarians gained in the post-genomics age have revealed a surprisingly complex immune system which bears a surprising level of similarity with the vertebrate innate immune system.
View Article and Find Full Text PDFAs scleractinian coral cover declines in the face of increased frequency in disease outbreaks, future reefs may become dominated by octocorals. Understanding octocoral disease responses and consequences is therefore necessary if we are to gain insight into the future of ecosystem services provided by coral reefs. In Florida, populations of the octocoral Eunicea calyculata infected with Eunicea black disease (EBD) were observed in the field in the fall of 2011.
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.