Publications by authors named "Contag C"

Mast cells are important effector cells in IgE-associated immune responses, but also can contribute to host defense in certain examples of bacterial infection. We found that genetically mast cell-deficient WBB6F1-Kit(W)/Kit(W-v) mice exhibited more bacterial CFUs per spleen by 6 days after intraperitoneal injection of bioluminescent Salmonella typhimurium, and died more rapidly after infection, than did the congenic WBB6F1-Kit(+/+) wild type mice. Adoptive transfer of bone marrow-derived cultured mast cells of Kit(+/+) origin to the peritoneal cavity of Kit(W)/Kit(W-v) mice resulted in engraftment of mast cells in the peritoneal cavity and mesentery of the recipient mice, and the development of large numbers of mast cells in the spleen.

View Article and Find Full Text PDF

A novel application of bioluminescence for nucleic acid quantification, the bioluminescence regenerative cycle (BRC), is described in theoretical terms and supported by preliminary experimental data. In the BRC system, pyrophosphate (PPi) molecules are released during biopolymerization and are counted and correlated to DNA copy number. The enzymes ATP-sulfurylase and firefly luciferase are employed to generate photons quantitatively from PPi.

View Article and Find Full Text PDF

Reconstruction of craniofacial defects presents a substantial biomedical burden, and requires complex surgery. Interestingly, children after age 2 years and adults are unable to heal large skull defects. This nonhealing paradigm provides an excellent model system for craniofacial skeletal tissueengineering strategies.

View Article and Find Full Text PDF

Graft-versus-host disease (GVHD) is a major obstacle in allogeneic hematopoietic cell transplantation. Given the dynamic changes in immune cell subsets and tissue organization, which occur in GVHD, localization and timing of critical immunological events in vivo may reveal basic pathogenic mechanisms. To this end, we transplanted luciferase-labeled allogeneic splenocytes and monitored tissue distribution by in vivo bioluminescence imaging.

View Article and Find Full Text PDF

Imaging methods that visualize the structure and function of the living body are widely used in patient care and biomedical research, but their full potential has not yet been applied to the study and treatment of the severe illnesses caused by pathogens of biodefense concern. "Conventional" imaging techniques (e.g.

View Article and Find Full Text PDF

Neonates and young children are acutely susceptible to infections by gastrointestinal bacterial pathogens, such as Salmonella enterica serovar Typhimurium (S. typhimurium). To reveal age-related differences in susceptibility to this pathogen, we used in vivo bioluminescence imaging (BLI) to monitor the progression of infection in neonatal (1-wk-old), suckling (2-wk-old), juvenile (4-wk-old), and adult (6-wk-old) BALB/c mice.

View Article and Find Full Text PDF

Hepatocellular carcinoma is generally refractory to clinical treatment. Here, we report that inactivation of the MYC oncogene is sufficient to induce sustained regression of invasive liver cancers. MYC inactivation resulted en masse in tumour cells differentiating into hepatocytes and biliary cells forming bile duct structures, and this was associated with rapid loss of expression of the tumour marker alpha-fetoprotein, the increase in expression of liver cell markers cytokeratin 8 and carcinoembryonic antigen, and in some cells the liver stem cell marker cytokeratin 19.

View Article and Find Full Text PDF

Unlabelled: Direct radiolabeling of proteins can result in the loss of targeting activity, requires highly customized procedures, and yields heterogeneous products. Here we describe a novel imaging complex comprised of a standardized (99m)Tc-radiolabeled adapter protein noncovalently bound to a "Docking tag" fused to a "Targeting protein". The assembly of this complex is based on interactions between human 109-amino acid (HuS) and 15-amino acid (Hu-tag) fragments of ribonuclease I, which serve as an "Adapter protein" and a Docking tag, respectively.

View Article and Find Full Text PDF

Craniosynostosis, the premature fusion of cranial sutures, is one of the most common craniofacial anomalies, with a reported incidence of up to one in 2500 live births. Despite its prevalence, the cause of craniosynostosis remains unknown. Previously, apoptosis has been postulated to be a contributing factor in the pathogenesis of craniosynostosis, although the role of programmed cell death in cranial sutures is poorly understood.

View Article and Find Full Text PDF

We present a novel confocal microscope that has dual-axis architecture and biaxial postobjective scanning for the collection of fluorescence images from biological specimens. This design uses two low-numerical-aperture lenses to achieve high axial resolution and long working distance, and the scanning mirror located distal to the lenses rotates along the orthogonal axes to produce arc-surface images over a large field of view (FOV). With fiber optic coupling, this microscope can potentially be scaled down to millimeter dimensions via microelectromechanical systems (MEMS) technology.

View Article and Find Full Text PDF

In vivo imaging of bioluminescent reporters relies on expression of light-emitting enzymes, luciferases, and delivery of chemical substrates to expressing cells. Coelenterazine (CLZN) is the substrate for a group of bioluminescent enzymes obtained from marine organisms. At present, there are more than 10 commercially available CLZN analogs.

View Article and Find Full Text PDF

Radiolabeled annexin V may provide an early indication of the success or failure of anticancer therapy on a patient-by-patient basis as an in vivo marker of tumor cell killing. An important question that remains is when, after initiation of treatment, should annexin V imaging be performed. To address this issue, we obtained simultaneous in vivo measurements of tumor burden and uptake of radiolabeled annexin V in the syngeneic orthotopic murine BCL1 lymphoma model using in vivo bioluminescence imaging (BLI) and small animal single-photon emission computed tomography (SPECT).

View Article and Find Full Text PDF

In adults and children over two years of age, large cranial defects do not reossify successfully, posing a substantial biomedical burden. The osteogenic potential of bone marrow stromal (BMS) cells has been documented. This study investigates the in vivo osteogenic capability of adipose-derived adult stromal (ADAS) cells, BMS cells, calvarial-derived osteoblasts and dura mater cells to heal critical-size mouse calvarial defects.

View Article and Find Full Text PDF

Understanding biological processes in the context of intact organ systems with fine temporal resolution has required the development of imaging strategies that reveal cellular and molecular changes in the living body. Reporter genes that confer optical signatures on a given biological process have been used widely in cell biology and have been used more recently to interrogate biological processes in living animal models of human biology and disease. The use of internal biological sources of light, luciferases, to tag cells, pathogens, and genes has proved to be a versatile tool to provide in vivo indicators that can be detected externally.

View Article and Find Full Text PDF

The expression of CD5 increases progressively as thymocytes mature. We have shown that CD5 expression is controlled by a tissue-specific regulatory promoter located upstream of the CD5 translation start sites. Deletion of this regulatory promoter, which contains three potential transcription factor binding sites (CCAAT, kappa E2, and ets) reduces the promoter activity to basal level.

View Article and Find Full Text PDF

Assessment of laser-induced tissue damage is not complete without an investigation into the resulting cellular and molecular changes. In the past, tissue damage was quantified macroscopically by visual effects such as tissue mass removal, carbonization and melting. Microscopically, assessment of tissue damage has been typically limited to histological analysis of excised tissue samples.

View Article and Find Full Text PDF

We define five unique cellular responses to thermal stress using a reporter construct generated using the stress-inducible promoter from the gene encoding a murine 70 kDa heat shock protein (Hsp70A.1) to express luciferase (luc). Thermal stress was delivered over a range of temperatures (42-68 degrees C) for 5 s to 20 min and luciferase activity was measured in live cells using a cooled CCD camera as a measure of reporter gene transcription.

View Article and Find Full Text PDF

The bacterium Listeria monocytogenes can cause a life-threatening systemic illness in humans. Despite decades of progress in animal models of listeriosis, much remains unknown about the processes of infection and colonization. Here, we report that L.

View Article and Find Full Text PDF

We examined the role of redox signaling generated by NADPH oxidase in activation of NF-kappaB and host defense against Pseudomonas aeruginosa pneumonia. Using mice with an NF-kappaB-driven luciferase reporter construct (HIV-LTR/luciferase (HLL)), we found that intratracheal administration of P. aeruginosa resulted in a dose-dependent neutrophilic influx and activation of NF-kappaB.

View Article and Find Full Text PDF

The lipid bilayer of a cell presents a significant barrier for the delivery of many molecular imaging reagents into cells at target sites in the body. Protein translocation domains (PTDs) are peptides that breach this barrier. Conjugation of PTDs to imaging agents can be utilized to facilitate the delivery of these agents through the cell wall, and in some cases, into the cell nucleus, and have potential for in vitro and in vivo applications.

View Article and Find Full Text PDF

To reveal the early events and dynamics of hematopoietic reconstitution in living animals in real-time, we used bioluminescence imaging to monitor engraftment from single luciferase-labeled hematopoietic stem cells (HSC) in irradiated recipients. Transplanted HSC generated discrete foci in the spleen and bone marrow (BM), at a frequency that correlated with BM compartment size. Initially detected foci could expand locally, seed other sites in BM or spleen, and/or recede with different kinetics.

View Article and Find Full Text PDF

Heme oxygenase (HO) is the rate-limiting step in the heme degradation pathway and is a potential target for the control, or prevention, of pathologic jaundice in neonates. Metalloporphyrins (Mps), a diverse set of synthetic derivatives of heme, can competitively inhibit the HO enzymes. However, certain Mps are phototoxic and some increase transcription of HO-1, the inducible HO isozyme.

View Article and Find Full Text PDF

Autoimmune disorders represent inappropriate immune responses directed at self-tissue. Antigen-specific CD4+ T cells and antigen-presenting dendritic cells (DCs) are important mediators in the pathogenesis of auto-immune disease and thus are ideal candidates for adoptive cellular gene therapy, an ex vivo approach to therapeutic gene transfer. Using retrovirally transduced cells and luciferase bioluminescence, we have demonstrated that primary T cells, T cell hybridomas, and DCs rapidly and preferentially home to the sites of inflammation in animal models of multiple sclerosis, arthritis, and diabetes.

View Article and Find Full Text PDF

We present a dual-axes confocal microscope that employs postobjective scanning and low-coherence heterodyne detection to collect vertical cross-sectional images from biological tissue with high axial resolution, reduced noise from scattered light, deep tissue penetration, and a large dynamic range. This architecture can be scaled down to millimeter dimensions with microelectromechanical systems technology for performance of in vivo optical biopsy.

View Article and Find Full Text PDF