In embryonic stem cells, promoters of key lineage-specific differentiation genes are found in a bivalent state, having both activating H3K4me3 and repressive H3K27me3 histone marks, making them poised for transcription upon loss of H3K27me3. Whether cancer-initiating cells (C-ICs) have similar epigenetic mechanisms that prevent lineage commitment is unknown. Here we show that colorectal C-ICs (CC-ICs) are maintained in a stem-like state through a bivalent epigenetic mechanism.
View Article and Find Full Text PDFBivalent chromatin domains containing both active H3K4me3 and repressive H3K27me3 histone marks define gene sets poised for expression or silencing in differentiating embryonic stem (ES) cells. In cancer cells, aberrantly poised genes may facilitate changes in transcriptional states after exposure to anticancer drugs. In this study, we used ChIP-seq to characterize genome-wide positioning of H3K4me3- and H3K27me3-associated chromatin in primary high-grade serous ovarian carcinomas and in normal ovarian surface and fallopian tube tissue.
View Article and Find Full Text PDFWe recently reported that atypical teratoid rhabdoid tumors (ATRTs) comprise at least two transcriptional subtypes with different clinical outcomes; however, the mechanisms underlying therapeutic heterogeneity remained unclear. In this study, we analyzed 191 primary ATRTs and 10 ATRT cell lines to define the genomic and epigenomic landscape of ATRTs and identify subgroup-specific therapeutic targets. We found ATRTs segregated into three epigenetic subgroups with distinct genomic profiles, SMARCB1 genotypes, and chromatin landscape that correlated with differential cellular responses to a panel of signaling and epigenetic inhibitors.
View Article and Find Full Text PDFObjectives: To evaluate the PAXgene tissue fixation system.
Methods: Clinical biospecimens (n = 46) were divided into PAXgene-fixed paraffin-embedded (PFPE), formalin-fixed paraffin-embedded (FFPE), and fresh-frozen (FF) blocks. PFPE and FFPE sections were compared for histology (H&E staining) and immunohistochemistry (14 antibodies) using tissue microarrays.
Genetic abnormalities of cholangiocarcinoma have been widely studied; however, epigenomic changes related to cholangiocarcinogenesis have been less well characterized. We have profiled the DNA methylomes of 28 primary cholangiocarcinoma and six matched adjacent normal tissues using Infinium's HumanMethylation27 BeadChips with the aim of identifying gene sets aberrantly and epigenetically regulated in this tumor type. Using a linear model for microarray data, we identified 1610 differentially methylated autosomal CpG sites, with 809 hypermethylated (representing 603 genes) and 801 hypomethylated (representing 712 genes) in cholangiocarcinoma versus adjacent normal tissues (false-discovery rate ≤ 0.
View Article and Find Full Text PDFPurpose: We aimed to identify DNA methylation biomarkers of progression-free survival (PFS) to platinum-based chemotherapy in high-grade serous ovarian cancer (HGSOC) within biologically relevant ovarian cancer-associated pathways.
Experimental Design: Association with PFS of CpG island (CGI) promoter DNA methylation at genes in the pathways Akt/mTOR, p53, redox, and homologous recombination DNA repair was sought with PFS as the primary objective in a prospectively collected ovarian cancer cohort (n = 150). Significant loci were validated for associations between PFS, methylation, and gene expression in an independent The Cancer Genome Atlas (TCGA) data set of HGSOC (n = 311).
Serous borderline tumors (SBOTs) are a challenging group of ovarian tumors positioned between benign and malignant disease. We have profiled the DNA methylomes of 12 low-grade serous carcinomas (LGSCs), 19 SBOTs, and 16 benign serous tumors (BSTs) across 27,578 CpG sites to further characterize the epigenomic relationship between these subtypes of ovarian tumors. Unsupervised hierarchical clustering of DNA methylation levels showed that LGSCs differ distinctly from BSTs, but not from SBOTs.
View Article and Find Full Text PDFTher Adv Med Oncol
September 2010
Epigenetic changes in tumours are associated not only with cancer development and progression, but also with resistance to chemotherapy. Aberrant DNA methylation at CpG islands and associated epigenetic silencing are observed during the acquisition of drug resistance. However, it remains unclear whether all of the observed changes are drivers of drug resistance, causally associated with response of tumours to chemotherapy, or are passenger events representing chance DNA methylation changes.
View Article and Find Full Text PDFPurpose: Wnt pathways control key biological processes that potentially impact on tumor progression and patient survival. We aimed to evaluate DNA methylation at promoter CpG islands (CGI) of Wnt pathway genes in ovarian tumors at presentation and identify biomarkers of patient progression-free survival (PFS).
Experimental Design: Epithelial ovarian tumors (screening study n = 120, validation study n = 61), prospectively collected through a cohort study, were analyzed by differential methylation hybridization at 302 loci spanning 189 promoter CGIs at 137 genes in Wnt pathways.
Background: Hypermethylation of promoter CpG islands is strongly correlated to transcriptional gene silencing and epigenetic maintenance of the silenced state. As well as its role in tumor development, CpG island methylation contributes to the acquisition of resistance to chemotherapy. Differential Methylation Hybridisation (DMH) is one technique used for genome-wide DNA methylation analysis.
View Article and Find Full Text PDFGliomas are tumors of the central nervous system with a wide spectrum of different tumor types. They range from pilocytic astrocytoma, with a generally good prognosis, to the extremely aggressive malignant glioblastoma. In addition to these 2 types of contrasting neoplasms, several other subtypes can be distinguished, each characterized by specific phenotypic, as well as genotypic features.
View Article and Find Full Text PDFLoss of heterozygosity (LOH) and in silico expression analysis were applied to identify genes significantly downregulated in breast cancer within the genomic interval 6q23-25. Systematic comparison of candidate EST sequences with genomic sequences from this interval revealed the genomic structure of a potential target gene on 6q24.3, which we called SAM and SH3 domain containing 1 (SASH1).
View Article and Find Full Text PDF