Epstein-Barr virus (EBV) is a latent and oncogenic human herpesvirus. Lytic viral protein expression plays an important role in EBV-associated malignancies. The EBV envelope glycoprotein 350 (gp350) is expressed abundantly during EBV lytic reactivation and sporadically on the surface of latently infected cells.
View Article and Find Full Text PDFHuman cytomegalovirus (HCMV) reactivations are associated with lower overall survival after transplantations. Adoptive transfer of HCMV-reactive expanded or selected T cells can be applied as a compassionate use, but requires that the human leukocyte antigen-matched donor provides memory cells against HCMV. To overcome this, we developed engineered T cells expressing chimeric antigen receptors (CARs) targeted against the HCMV glycoprotein B (gB) expressed upon viral reactivation.
View Article and Find Full Text PDFHumanized mice developing functional human T cells endogenously and capable of recognizing cognate human leukocyte antigen-matched tumors are emerging as relevant models for studying human immuno-oncology in vivo. Herein, mice transplanted with human CD34 stem cells and bearing endogenously developed human T cells for >15 weeks were infected with an oncogenic recombinant Epstein-Barr virus (EBV), encoding enhanced firefly luciferase and green fluorescent protein. EBV-firefly luciferase was detectable 1 week after infection by noninvasive optical imaging in the spleen, from where it spread rapidly and systemically.
View Article and Find Full Text PDFLentiviral vectors (LVs) developed in the past two decades for research and pre-clinical purposes have entered clinical trials with remarkable safety and efficacy performances. Development and clinical testing of LVs for improvement of human immunity showed major advantages in comparison to other viral vector systems. Robust and persisted transduction efficiency of blood cells with LVs, resulted into a broad range of target cells for immune therapeutic approaches: from hematopoietic stem cells and precursor cells for correction of immune deficiencies, up to effector lymphoid and myeloid cells.
View Article and Find Full Text PDF