Spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disease characterized by degeneration of lower motor neurons (LMNs), causing muscle weakness, atrophy, and paralysis. SMA is caused by mutations in the Survival Motor Neuron 1 () gene and can be classified into four subgroups, depending on its severity. Even though the genetic component of SMA is well known, the precise mechanisms underlying its pathophysiology remain elusive.
View Article and Find Full Text PDFAll animals must detect noxious stimuli to initiate protective behavior, but the evolutionary origin of nociceptive systems is not well understood. Here we show that noxious heat and irritant chemicals elicit robust escape behaviors in the planarian Schmidtea mediterranea and that the conserved ion channel TRPA1 is required for these responses. TRPA1-mutant Drosophila flies are also defective in noxious-heat responses.
View Article and Find Full Text PDFRegeneration involves precise control of cell fate to produce an appropriate complement of tissues formed within a blastema. Several chromatin-modifying complexes have been identified as required for regeneration in planarians, but it is unclear whether this class of molecules uniformly promotes the production of differentiated cells. We identify a function for p66, encoding a DNA-binding protein component of the NuRD (nucleosome remodeling and deacetylase) complex, as well as the chromodomain helicase chd4, in suppressing production of photoreceptor neurons (PRNs) in planarians.
View Article and Find Full Text PDFMechanisms that enable injury responses to prompt regenerative outgrowth are not well understood. Planarians can regenerate essentially any tissue removed by wounding, even after decapitation, due to robust regulation of adult pluripotent stem cells of the neoblast population. Formation of pole signaling centers involving Wnt inhibitors or Wnt ligands promotes head or tail regeneration, respectively, and this process requires the use of neoblasts early after injury.
View Article and Find Full Text PDFCell growth and proliferation are pivotal for final organ and body size definition. p53-related protein kinase (Bud32/PRPK) has been identified as a protein involved in proliferation through its effects on transcription in yeast and p53 stabilization in human cell culture. However, the physiological function of Bud32/PRPK in metazoans is not well understood.
View Article and Find Full Text PDFMammals lacking BLOC-3 have impaired formation of melanosomes, a type of lysosome-related organelle (LRO), and, in earlier work, we found that a subunit of the BLOC-3 complex inhibits loading of Argonaute (Ago) proteins with small ribonucleic acids (RNAs) in Drosophila melanogaster cells. Small RNAs such as small interfering RNAs (siRNAs) direct Ago proteins to repress the stability of messenger RNA transcripts. In this paper, we show that BLOC-3 is required for biogenesis of Drosophila LROs called pigment granules.
View Article and Find Full Text PDF