Publications by authors named "Constantine Khripin"

Biology is replete with examples, at length scales ranging from the molecular (ligand-receptor binding) to the mesoscopic scale (wing arresting structures on dragonflies) where shape-complementary surfaces are used to control interfacial mechanical properties such as adhesion, friction, and contact compliance. Related bio-inspired and biomimetic structures have been used to achieve unique interfacial properties such as friction and adhesion enhancement, directional and switchable properties. The ability to tune friction by altering surface structures offers advantages in various fields, such as soft robotics and tire manufacturing.

View Article and Find Full Text PDF

Lubricated contacts in soft materials are common in various engineering and natural settings, such as tires, haptic applications, contact lenses, and the fabrication of soft electronic devices. Two major regimes are elasto-hydrodynamic lubrication (EHL), in which solid surfaces are fully separated by a fluid film, and mixed lubrication (ML), in which there is partial solid-to-solid contact. The transition between these regimes governs the minimum sliding friction achievable and is thus very important.

View Article and Find Full Text PDF

Molecular force probes that generate optical responses to critical levels of mechanical stress (mechanochromophores) are increasingly attractive tools for identifying molecular sites that are most prone to failure. Here, a coumarin dimer mechanophore whose mechanical strength is comparable to that of the sulfur-sulfur bonds found in vulcanized rubbers is reported. It is further shown that the strain-induced scission of the coumarin dimer within the matrix of a particle-reinforced polybutadiene-based co-polymer can be detected and quantified by fluorescence spectroscopy, when cylinders of the nanocomposite are subjected to unconstrained uniaxial stress.

View Article and Find Full Text PDF

Lubricated contacts are present in many engineering and biological systems involving soft solids. Typical mechanisms considered for controlling the sliding friction in such lubricated conditions involve bulk material compliance, fluid viscosity, viscoelastic response of the material (hysteretic friction), and breaking of the fluid film where dry contact occurs (adhesive friction). In this work we show that a two-phase periodic structure (TPPS), with a varying modulus across the sliding surface, provides significant enhancement of lubricated sliding friction when the system is in the elastohydrodynamic lubrication (EHL) regime.

View Article and Find Full Text PDF

Semiconducting single-wall carbon nanotubes (SWCNTs) with long lengths are highly desirable for many applications such as thin-film transistors and circuits. Previously reported length sorting techniques usually require sophisticated instrumentation and are hard to scale up. In this paper, we report for the first time a general phenomenon of a length-dependent precipitation of surfactant-dispersed carbon nanotubes by polymers, salts, and their combinations.

View Article and Find Full Text PDF

Sorting single-wall carbon nanotubes (SWCNTs) of different chiralities is both scientifically interesting and technologically important. Recent studies have shown that polymer aqueous two-phase extraction is a very effective way to achieve nanotube sorting. However, works published to date have demonstrated only separation of surfactant-dispersed SWCNTs, and the mechanism of chirality-dependent SWCNT partition is not well understood.

View Article and Find Full Text PDF

Because of their repetitive chemical structure, extreme rigidity, and the separability of populations with varying aspect ratio, SWCNTs are excellent candidates for use as model rodlike colloids. In this contribution, the sedimentation velocities of length and density sorted single-wall carbon nanotubes (SWCNTs) are compared to predictions from rod hydrodynamic theories of increasing complexity over a range of aspect ratios from <50 to >400. Independently measuring all contributions to the sedimentation velocity besides the shape factor, excellent agreement is found between the experimental findings and theoretical predictions for numerically calculated hydrodynamic radius values and for multiterm analytical expansion approximations; values for the hydrodynamic radii in these cases are additionally found to be consistent with the apparent hydrated particle radius determined independently by buoyancy measurements.

View Article and Find Full Text PDF

Development of simple processes to fractionate synthetic mixtures of single-wall carbon nanotubes (SWCNTs) into individual species is crucial to many applications. Existing methods for single-chirality SWCNT purification are cumbersome, often requiring multiple steps and different conditions for different species. Here, we report a method to achieve total fractionation of a synthetic SWCNT mixture by countercurrent chromatography, resulting in purification of many single-chirality SWCNT species in a single run.

View Article and Find Full Text PDF

Aqueous two-phase extraction is demonstrated to enable isolation of single semiconducting and metallic single-wall carbon nanotube species from a synthetic mixture. The separation is rapid and robust, with remarkable tunability via modification of the surfactant environment set for the separation.

View Article and Find Full Text PDF

Single-stranded DNA is able to wrap around single-wall carbon nanotubes (CNT) and form stable DNA-CNT hybrids that are highly soluble in solution. Here we report quantitative measurements and analysis of the interactions between DNA-CNT hybrids at low salts. Condensation of DNA-CNT hybrids by neutral osmolytes leads to liquid crystalline phases, and varying the osmotic pressure modulates the interhybrid distance that is determined by x-ray diffraction.

View Article and Find Full Text PDF

The distribution of nanoparticles in different aqueous environments is a fundamental problem underlying a number of processes, ranging from biomedical applications of nanoparticles to their effects on the environment, health, and safety. Here, we study distribution of carbon nanotubes (CNTs) in two immiscible aqueous phases formed by the addition of polyethylene glycol (PEG) and dextran. This well-defined model system exhibits a strikingly robust phenomenon: CNTs spontaneously partition between the PEG- and the dextran-rich phases according to nanotube's diameter and metallicity.

View Article and Find Full Text PDF

The structure and density of the bound interfacial surfactant layer and associated hydration shell were investigated using analytical ultracentrifugation for length and chirality purified (6,5) single-wall carbon nanotubes (SWCNTs) in three different bile salt surfactant solutions. The differences in the chemical structures of the surfactants significantly affect the size and density of the bound surfactant layers. As probed by exchange of a common parent nanotube population into sodium deoxycholate, sodium cholate, or sodium taurodeoxycholate solutions, the anhydrous density of the nanotubes was least for the sodium taurodeoxycholate surfactant, and the absolute sedimentation velocities greatest for the sodium cholate and sodium taurodeoxycholate surfactants.

View Article and Find Full Text PDF

Length fractionation of colloidal single-wall carbon nanotube (SWCNT) dispersions is required for many studies. Size-exclusion chromatography (SEC) has been developed as a reliable method for high-resolution length fractionation of DNA-dispersed SWCNTs but has not been applied to surfactant-dispersed SWCNTs due to their lower dispersion stability and tendency to adsorb onto SEC stationary phases. Here, we report that SEC length fractionation can be achieved for bile salt dispersed SWCNTs by using porous silica-based beads as the stationary phase and bile salt solution as the mobile phase.

View Article and Find Full Text PDF

The determination of the carbon concentration of single-wall carbon nanotubes (SWCNTs) in a given dispersion is a basic requirement for many studies. The commonly used optical absorption-based concentration measurement is complicated by the spectral change due to variations in nanotube chirality and length. In particular, the origin of the observed length-dependent spectral change and its effect on concentration determination has been the subject of considerable debate.

View Article and Find Full Text PDF

A new method is demonstrated for measuring the length distributions of dispersed single-walled carbon nanotube (SWCNT) samples by analyzing diffusional motions of many individual nanotubes in parallel. In this method, termed "length analysis by nanotube diffusion" (LAND), video sequences of near-IR fluorescence microscope images showing many semiconducting SWCNTs are recorded and processed by custom image analysis software. This processing locates the individual nanotubes, tracks their translational trajectories, computes the corresponding diffusion coefficients, and converts those values to nanotube lengths.

View Article and Find Full Text PDF

Emerging applications require single-wall carbon nanotubes (SWCNTs) of well-defined length. Yet the use of length-defined SWCNTs is limited, in part due to the lack of an easily accessible materials preparation method. Here, we present a new strategy for SWCNT length fractionation based on molecular crowding induced cluster formation.

View Article and Find Full Text PDF

The armchair carbon nanotube is an ideal system to study fundamental physics in one-dimensional metals and potentially a superb material for applications such as electrical power transmission. Synthesis and purification efforts to date have failed to produce a homogeneous population of such a material. Here we report evolutionary strategies to find DNA sequences for the recognition and subsequent purification of (6,6) and (7,7) armchair species from synthetic mixtures.

View Article and Find Full Text PDF

The fabrication of nanostructured films possessing tricontinuous minimal surface mesophases with well-defined framework and pore connectivity remains a difficult task. As a new route to these structures, we introduce glycerol monooleate (GMO) as a template for evaporation-induced self-assembly. As deposited, a nanostructured double gyroid phase is formed, as indicated by analysis of grazing-incidence small-angle x-ray scattering data.

View Article and Find Full Text PDF

Through precise control of nanoscale building blocks, such as proteins and polyamines, silica condensing microorganisms are able to create intricate mineral structures displaying hierarchical features from nano- to millimeter-length scales. The creation of artificial structures of similar characteristics is facilitated through biomimetic approaches, for instance, by first creating a bioscaffold comprised of silica condensing moieties which, in turn, govern silica deposition into three-dimensional (3D) structures. In this work, we demonstrate a protein-directed approach to template silica into true arbitrary 3D architectures by employing cross-linked protein hydrogels to controllably direct silica condensation.

View Article and Find Full Text PDF

We report a unique approach in which living cells direct their integration into 3D solid-state nanostructures. Yeast cells deposited on a weakly condensed lipid/silica thin film mesophase actively reconstruct the surface to create a fully 3D bio/nano interface, composed of localized lipid bilayers enveloped by a lipid/silica mesophase, through a self-catalyzed silica condensation process. Remarkably, this integration process selects exclusively for living cells over the corresponding apoptotic cells (those undergoing programmed cell death), via the development of a pH gradient, which catalyzes silica deposition and the formation of a coherent interface between the cell and surrounding silica matrix.

View Article and Find Full Text PDF

The traditional formulation for random sequential adsorption (RSA) of line segments onto a plane does not possess a jamming limit; there is always space for a 1D object on a 2D plane. We propose a qualitatively different RSA formulation for line segments which does lead to a finite jamming limit, 1.5707+/-0.

View Article and Find Full Text PDF

We investigate a simple model for equilibrium deformation of a sheet with concentration-dependent elasticity. The model is motivated by several physical situations where deformation of a sheet is modulated by concentration of a mobile species, for example, a quasi-2D array of carbon nanotubes. Elasticity of the sheet is modeled using a free energy functional that includes concentration-dependent potential energies, and a free energy of mixing.

View Article and Find Full Text PDF

Single-stranded DNA wrap helically around individual single-walled carbon nanotubes to form DNA/CNT hybrids, which are both stable and dispersible in aqueous solution. Subjected to ion-exchange chromatography, a hybrid elutes at an ionic strength that depends on the electronic character and diameter of the core nanotube, thus providing a mechanism for separating nanotubes by chirality. We present a theoretical model for this separation process that explains all the salient features observed experimentally to date, and provides accurate predictions for critical elution salt concentration.

View Article and Find Full Text PDF

We report a simple solution process to form controlled patterns of aligned single-walled carbon nanotubes on solid substrates. The essential step of the process is to deposit a dilute solution of DNA-wrapped carbon nanotubes (DNA-CNTs) on a SiO(2) surface covered with a thin hydrophobic layer. This leads to deposition of fully aligned CNTs.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: