Although small-molecule inhibitors with moderate efficacy targeting MYC have been previously described, to this point, research efforts have failed to bring a suitable small-molecule MYC inhibitor to the clinic. Herein, the discovery of a series of novel MYC degraders bearing VHL to target the "undruggable" MYC is presented. The molecules are based on connecting a known MYC binder to a VHL ligand or pomalidomide to induce MYC degradation in various cancer cells known to express MYC.
View Article and Find Full Text PDFObesity is a major source of morbidity worldwide with more than 2 billion adults being overweight or obese. The incidence of obesity has tripled in the last 50 years, leading to an increased risk for a variety of noncommunicable diseases. Previous studies have demonstrated the positive effects of green leafy vegetables on weight gain and obesity and have attributed these beneficial properties, at least in part, to nitrates and isothiocyanates.
View Article and Find Full Text PDFChemistry
September 2024
The multiplexity of cancer has rendered it the second leading cause of mortality worldwide and theragnostic prodrugs have gained popularity in recent years as a means of treatment. Theragnostic prodrugs enable the simultaneous diagnosis and therapy of tumors via high-precision real-time drug release monitoring. Herein, we report the development of the small theragnostic prodrug GF, based on the nucleoside anticancer agent gemcitabine and the fluorescent dye 5(6)-carboxyfluorescein.
View Article and Find Full Text PDFCardiovasc Intervent Radiol
May 2024
Pharmaceuticals (Basel)
May 2023
Introduction: The perioperative management of patients with pulmonary hypertension (PH) undergoing cardiac surgery represents one of the most challenging clinical scenarios. This fact mainly depends on the relationship existing between PH and right ventricular failure (RVF). Levosimendan (LS) is an inodilator that might be an effective agent in the treatment of PH and RVF.
View Article and Find Full Text PDFPathological deterioration of mitochondrial function is increasingly linked with multiple degenerative illnesses as a mediator of a wide range of neurologic and age-related chronic diseases, including those of genetic origin. Several of these diseases are rare, typically defined in the United States as an illness affecting fewer than 200,000 people in the U.S.
View Article and Find Full Text PDFCancer treatment with chemotherapeutic drugs remains to be challenging to the physician due to limitations associated with lack of efficacy or high toxicities. Typically, chemotherapeutic drugs are administered intravenously, leading to high drug concentrations that drive efficacy but also lead to known side effects. Delivery of drugs through transdermal microneedles (MNs) has become an important alternative treatment approach.
View Article and Find Full Text PDFc(RGDyK)-based conjugates of gemcitabine (GEM) with the carbonate and carbamate linkages in the 6-OH group of GEM were synthesized for the targeted delivery of GEM to integrin αβ, overexpressing cancer cells to increase the stability as well as the tumor delivery of GEM and minimize common side effects associated with GEM treatment. Competitive cell uptake experiments demonstrated that conjugate could be internalized by A549 cells through integrin αβ. Among the synthesized conjugates, bearing the carbamate linker was stable in human plasma and was further assessed in an pharmacokinetic study.
View Article and Find Full Text PDFHerein we trace links between biochemical pathways, pathogenesis, and metabolic diseases to set the stage for new therapeutic advances. Cellular and acellular microorganisms including bacteria and viruses are primary pathogenic drivers that cause disease. Missing from this statement are subcellular compartments, importantly mitochondria, which can be pathogenic by themselves, also serving as key metabolic disease intermediaries.
View Article and Find Full Text PDFPioneering studies on tumor and immune cell interactions have highlighted immune checkpoint inhibitors (ICIs) as revolutionizing interventions for the management of NSCLC, typically combined with traditional MTD chemotherapies, which usually lead to toxicities and resistance to treatment. Alternatively, MTR chemotherapy is based on the daily low dose administration of chemotherapeutics, preventing tumor growth indirectly by targeting the tumor microenvironment. The effects of MTR administration of an oral prodrug of gemcitabine (OralGem), alone or with anti-PD1, were evaluated.
View Article and Find Full Text PDFBreast cancer (BC) is a highly heterogeneous disease encompassing multiple subtypes with different molecular and histopathological features, disease prognosis, and therapeutic responses. Among these, the Triple Negative BC form (TNBC) is an aggressive subtype with poor prognosis and therapeutic outcome. With respect to HER2 overexpressing BC, although advanced targeted therapies have improved the survival of patients, disease relapse and metastasis remains a challenge for therapeutic efficacy.
View Article and Find Full Text PDFEur J Med Chem
February 2021
Peptide-drug conjugates (PDCs) are gaining considerable attention as anti-neoplastic agents. However, their development is often laborious and time-consuming. Herein, we have developed and preclinically evaluated three PDCs with gemcitabine as the anticancer cytotoxic unit and D-Lys-GnRH (gonadotropin-releasing hormone; GnRH) as the cancer-targeting unit.
View Article and Find Full Text PDFEur J Med Chem
August 2019
Novel substituted purine isosters, were designed and synthesized as potential inhibitors of the Epidermal Growth Factor Receptor (EGFR). The compounds were rationally designed through bioisosteric replacement of the central quinazoline core of lapatinib, an approved drug that inhibits both EGFR and HER2, another important member of this family of receptors. The new target molecules were evaluated as inhibitors of receptor phosphorylation at the cellular level, for their direct inhibitory action on the intracellular receptor kinase domain and for their cytotoxicity against the non-small cell lung cancer cell line A549 and breast cancer HCC1954, cell lines which are associated with overexpression of EGFR and HER2, respectively.
View Article and Find Full Text PDFPeptide-drug conjugates have emerged as a potent approach to enhance the targeting and pharmacokinetic profiles of drugs. However, the impact of the linker unit has not been explored/exploited in depth. Gemcitabine (dFdC) is an anticancer agent used against a variety of solid tumours.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
October 2017
Nanostructured delivery and diagnostic systems that induces specific targeting properties by exploiting the local physicochemical tumour characteristics will be evaluated is the present work. It is well known that cancer cells have specific physicochemical characteristics, which can be taken into consideration for the design of a broad spectrum of drug delivery systems (DDS). Some of those characteristics including the different temperature environment their susceptibility when temperature ranges between 40 and 43°C where cell apoptosis is induced, the intra- and extra-cellular pH which varies from 6.
View Article and Find Full Text PDFThe clinical efficacy of antiangiogenic small molecules (e.g., sunitinib) in breast carcinoma has largely failed with substantial off-target toxicity.
View Article and Find Full Text PDFParkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic (DAergic) neurons in the substantia nigra and the gradual depletion of dopamine (DA). Current treatments replenish the DA deficit and improve symptoms but induce dyskinesias over time, and neuroprotective therapies are nonexistent. Here we report that Nuclear receptor-related 1 (Nurr1):Retinoid X receptor α (RXRα) activation has a double therapeutic potential for PD, offering both neuroprotective and symptomatic improvement.
View Article and Find Full Text PDFGemcitabine is a clinically established anticancer agent potent in various solid tumors but limited by its rapid metabolic inactivation and off-target toxicity. We have previously generated a metabolically superior to gemcitabine molecule (GSG) by conjugating gemcitabine to a gonadotropin releasing hormone receptor (GnRH-R) ligand peptide and showed that GSG was efficacious in a castration resistant prostate cancer (CRPC) animal model. The current article provides an in-depth metabolic and mechanistic study of GSG, coupled with toxicity assays that strengthen the potential role of GSG in the clinic.
View Article and Find Full Text PDFBreast cancer (BrCa) remains an unmet medical need despite the revolutionary development of antibody treatments and protein kinase inhibitors. In the current study, a series of novel substituted pyridopyrazine derivatives have been rationally designed and evaluated as multi-kinase inhibitors in the PI3K pathway. The target compounds were prepared from 6-amino-2-picoline, which upon nitration and selective reduction was converted to suitably substituted 6-methyl-7-aminopyrido[2,3-b]pyrazines.
View Article and Find Full Text PDFAnticancer Agents Med Chem
August 2017
Objective: A series of novel 2,4-diaminosubstituted pyrrolo[3,2-d]pyrimidines was synthesized together with their corresponding 7-phenyl or 7-isopropyl counterparts.
Results: Among the target derivatives, the 7-substituted analogues exhibited interesting cytotoxic activity against a panel of PI3Kα related human breast cancer cell lines, namely MCF7, T47D, MDA-MB-231 and HCC1954. Selected compounds were tested for potential PI3Kα inhibitory activity as well as for their cytotoxic effect in prostate cancer cell lines (DU145 and PC3).
The potential to heighten the efficacy of antiangiogenic agents was explored in this study based on active targeting of tumor cells overexpressing the gonadotropin-releasing hormone receptor (GnRH-R). The rational design pursued focused on five analogues of a clinically established antiangiogenic compound (sunitinib), from which a lead candidate (SAN1) was conjugated to the targeting peptide [d-Lys(6)]-GnRH, generating SAN1GSC. Conjugation of SAN1 did not disrupt any of its antiangiogenic or cytotoxic properties in GnRH-R-expressing prostate and breast tumor cells.
View Article and Find Full Text PDFBackground: Pancreatic ductal adenocarcinoma (PDA) is frequently driven by oncogenic KRAS(KRAS*) mutations. We developed a mouse model of KRAS*-induced PDA and, based on genetic results demonstrating that KRAS* tumorigenicity depends on Myc activity, we evaluated the therapeutic potential of an orally administered anti-Myc drug.
Methods: We tested the efficacy of Mycro3, a small-molecule inhibitor of Myc-Max dimerization, in the treatment of mouse PDA (n = 9) and also of xenografts of human pancreatic cancer cell lines (NOD/SCID mice, n = 3-12).
Gemcitabine, a drug with established efficacy against a number of solid tumors, has therapeutic limitations due to its rapid metabolic inactivation. The aim of this study was the development of an innovative strategy to produce a metabolically stable analogue of gemcitabine that could also be selectively delivered to prostate cancer (CaP) cells based on cell surface expression of the Gonadotropin Releasing Hormone-Receptor (GnRH-R). The synthesis and evaluation of conjugated molecules, consisting of gemcitabine linked to a GnRH agonist, is presented along with results in androgen-independent prostate cancer models.
View Article and Find Full Text PDFBackground: This study examined the safety, pharmacokinetics, and efficacy of transarterial chemoembolization of hepatocellular carcinoma (HCC) using a newly developed size of a superabsorbent polymer drug-eluting embolic material.
Methods: Forty-five patients with documented HCC (Child-Pugh score A/B: 55.5 %/44.