Motivation: Antibody-antigen complex modelling is an important step in computational workflows for therapeutic antibody design. While experimentally determined structures of both antibody and the cognate antigen are often not available, recent advances in machine learning-driven protein modelling have enabled accurate prediction of both antibody and antigen structures. Here, we analyse the ability of protein-protein docking tools to use machine learning generated input structures for information-driven docking.
View Article and Find Full Text PDFIn 2013, we released the Structural Antibody Database (SAbDab), a publicly available repository of experimentally determined antibody structures. In the interim, the rapid increase in the number of antibody structure depositions to the Protein Data Bank, driven primarily by increased interest in antibodies as biotherapeutics, has led us to implement several improvements to the original database infrastructure. These include the development of SAbDab-nano, a sub-database that tracks nanobodies (heavy chain-only antibodies) which have seen a particular growth in attention from both the academic and pharmaceutical research communities over the past few years.
View Article and Find Full Text PDFIdentifying the epitope of an antibody is a key step in understanding its function and its potential as a therapeutic. Sequence-based clonal clustering can identify antibodies with similar epitope complementarity, however, antibodies from markedly different lineages but with similar structures can engage the same epitope. We describe a novel computational method for epitope profiling based on structural modelling and clustering.
View Article and Find Full Text PDFMotivation: Antibodies are one of the most important classes of pharmaceuticals, with over 80 approved molecules currently in use against a wide variety of diseases. The drug discovery process for antibody therapeutic candidates however is time- and cost-intensive and heavily reliant on in vivo and in vitro high throughput screens. Here, we introduce a framework for structure-based deep learning for antibodies (DLAB) which can virtually screen putative binding antibodies against antigen targets of interest.
View Article and Find Full Text PDFPhytochromes are biological red/far-red light sensors found in many organisms. Prototypical phytochromes, including Cph1 from the cyanobacterium 6803, act as photochemical switches that interconvert between stable red (Pr)- and metastable far-red (Pfr)-absorbing states induced by photoisomerization of the bilin chromophore. The connection between photoconversion and the cellular output signal involves light-mediated global structural changes in the interaction between the photosensory module (PAS-GAF-PHY) and the C-terminal transmitter (output) module, usually a histidine kinase, as in the case of Cph1.
View Article and Find Full Text PDFPhytochromes are biological red/far-red light sensors found in many organisms. Photoisomerization of the linear methine-bridged tetrapyrrole triggers transient proton translocation events in the chromophore binding pocket (CBP) leading to major conformational changes of the protein matrix that are in turn associated with signaling. By combining pH-dependent resonance Raman and UV-visible absorption spectroscopy, we analyzed protonation-dependent equilibria in the CBP of Cph1 involving the proposed Pr-I and Pr-II substates that prevail below and above pH 7.
View Article and Find Full Text PDFA variant of the cation channel channelrhodopsin-2 from Chlamydomonas reinhardtii (CrChR2) was selectively labeled at position Cys-79 at the end of the first cytoplasmic loop and the beginning of transmembrane helix B with the fluorescent dye fluorescein (acetamidofluorescein). We utilized (i) time-resolved fluorescence anisotropy experiments to monitor the structural dynamics at the cytoplasmic surface close to the inner gate in the dark and after illumination in the open channel state and (ii) time-resolved fluorescence quenching experiments to observe the solvent accessibility of helix B at pH 6.0 and 7.
View Article and Find Full Text PDFAim: To evaluate a newly developed hand-held confocal probe for in vivo microscopic imaging of the complete gastrointestinal tract in rodents.
Methods: A novel rigid confocal probe (diameter 7 mm) was designed with optical features similar to the flexible endomicroscopy system for use in humans using a 488 nm single line laser for fluorophore excitation. Light emission was detected at 505 to 750 nm.
Background And Aims: Because of the large number of biopsy specimens, surveillance colonoscopy in ulcerative colitis (UC) is currently time consuming and significant flat lesions still may be missed. In this study we assessed the value of combined chromoscopy and endomicroscopy for the diagnosis of intraepithelial neoplasias in a randomized controlled trial.
Methods: A total of 161 patients with long-term UC in clinical remission were randomized at a 1:1 ratio to undergo conventional colonoscopy or chromoscopy with endomicroscopy.