Publications by authors named "Constantin Kappas"

Medical Physics Department (Medical School, University of Thessaly) participated in a Greek National EMF research program (EDBM34) with the scope to measure and evaluate radiofrequency (RF) exposure (27-3000 MHz) in areas of sensitive land use. A thousand (1000) measurements were carried out at two "metropolitan locations" (Athens and Thessaloniki: 624 points) and several rest urban/rural locations (376 points). SRM 3006 spectrum analyzer manufactured by Narda Safety Test Solutions was used.

View Article and Find Full Text PDF

Background: The increasing popularity of mobile phones and the expansion of network infrastructure in Greece have given rise to public concerns about potential adverse health effects on sensitive groups, such as children, from long-term radio-frequency (RF) electromagnetic fields (EMFs) exposure. According to Greek law the RF limit values for sensitive land use (schools, hospitals, etc) have been set to 60% of those recommended by EU standard and 70% for the general population.

Aims: The objective of this study is to estimate mean RF-EMF exposure levels of Greek primary and secondary edu-cation schools located in urban environments.

View Article and Find Full Text PDF

Over the years, MR systems have evolved from imaging modalities to advanced computational systems producing a variety of numerical parameters that can be used for the noninvasive preoperative assessment of breast pathology. Furthermore, the combination with state-of-the-art image analysis methods provides a plethora of quantifiable imaging features, termed radiomics that increases diagnostic accuracy towards individualized therapy planning. More importantly, radiomics can now be complemented by the emerging deep learning techniques for further process automation and correlation with other clinical data which facilitate the monitoring of treatment response, as well as the prediction of patient's outcome, by means of unravelling of the complex underlying pathophysiological mechanisms which are reflected in tissue phenotype.

View Article and Find Full Text PDF

The role of conventional Magnetic Resonance Imaging (MRI) in the detection of cerebral tumors has been well established. However its excellent soft tissue visualization and variety of imaging sequences are in many cases non-specific for the assessment of brain tumor grading. Hence, advanced MRI techniques, like Diffusion-Weighted Imaging (DWI), Diffusion Tensor Imaging (DTI) and Dynamic-Susceptibility Contrast Imaging (DSCI), which are based on different contrast principles, have been used in the clinical routine to improve diagnostic accuracy.

View Article and Find Full Text PDF

The advent of PET instrumentation signaled the beginning of a new perspective in nuclear medicine diagnostic imaging. PET systems rely on several corrections that must be applied in order to establish accurate and reliable quantification. The inherent properties of PET detector architecture and the crystals themselves are sources of different types of systematic and random errors with subsequent count rate variability that should be accounted for.

View Article and Find Full Text PDF

This study determines the optimal clinical scenarios for gold nanoparticle dose enhancement as a function of irradiation conditions and potential biological targets using megavoltage x-ray beams. Four hundred and eighty clinical beams were studied for different potential cellular or sub-cellular targets. Beam quality was determined based on a 6 MV linac with and without a flattening filter for various delivery conditions.

View Article and Find Full Text PDF

Purpose: Telomerase activity (TA), frequently observed in cancer, compensates for telomere shortening thus preventing cell senescence and conferring resistance to therapy. In the present study, we investigated the expression of human telomerase reverse transcriptase (hTERT) and TA and their regulation, as well as apoptotic rates and correlation with the presence of human epidermal growth factor receptor 2 (HER2), in irradiated tumour-derived breast cancer cells.

Materials And Methods: In 50 breast cancer tissue samples hTERT mRNA expression and TA were correlated with cell features (HER2, Estrogen and Progesterone Receptor status).

View Article and Find Full Text PDF

The development of patient-specific treatment planning systems is of outmost importance in the development of radionuclide dosimetry, taking into account that quantitative three-dimensional nuclear medical imaging can be used in this regard. At present, the established method for dosimetry is based on the measurement of the biokinetics by serial gamma-camera scans, followed by calculations of the administered activity and the residence times, resulting in the radiation-absorbed doses of critical organs. However, the quantification of the activity in different organs from planar data is hampered by inaccurate attenuation and scatter correction as well as because of background and organ overlay.

View Article and Find Full Text PDF

Objective: We sought to develop a user-friendly dosimetry toolkit that should aid the improvement of the quality of radionuclide therapy, which is critically dependent on patient-specific planning of each treatment.

Methods: In this work, we present a new toolkit suitable for indicative radionuclide dose calculation. The software is built using open source tools and it uses dose kernels calculated using the Geant4 Application for Tomographic Emission simulation toolkit.

View Article and Find Full Text PDF

Purpose: The aim of this work was to develop a user-friendly and simple tool for fast and accurate estimation of Normal Tissue Complication Probabilities (NTCP) for several radiobiological models, which can be used as a valuable complement to the clinical experience.

Materials And Methods: The software which has been named DORES (Dose Response Evaluation Software) has been developed in Visual Basic, and includes three NTCP models (Lyman-Kuther-Burman (LKB), Relative Seriality and Parallel). Required input information includes the Dose-Volume Histogram (DVH) for the Organs at Risk (OAR) of each treatment, the number of fractions and the total dose of therapy.

View Article and Find Full Text PDF

Introduction: In SRT/SRS, dedicated treatment planning systems are used for the calculation of the dose distribution. The majority of these systems utilize the standard TMR/OAR formalism for dose calculation as well as they usually neglect any perturbation due to head heterogeneities. The aim of this study is to examine the errors due to head heterogeneities for both absolute and relative dose distributions in stereotactic radiotherapy.

View Article and Find Full Text PDF

The optimum selection of beams and arcs in conformal techniques is of the outmost importance in modern radiotherapy. In this work we give a description of an analytic method to aid optimum selection, which is based on minimizing the intersection between beams and organs at risk (OAR) and on minimizing the intersection between the beam and the planning target volume (PTV). An arc-selection function that permits selection of irradiation arcs based on individual beam feasibility is introduce.

View Article and Find Full Text PDF

This work aims to evaluate the predictive strength of the relative seriality, parallel and Lyman-Kutcher-Burman (LKB) normal tissue complication probability (NTCP) models regarding the incidence of radiation pneumonitis (RP), in a group of patients following lung cancer radiotherapy and also to examine their correlation with pulmonary function tests (PFTs). The study was based on 47 patients who received radiation therapy for stage III non-small-cell lung cancer. For each patient, lung dose volume histograms (DVHs) and the clinical treatment outcome were available.

View Article and Find Full Text PDF

Background And Purpose: Low megavoltage photon beams are often the treatment choice in radiotherapy when low density heterogeneities are involved, because higher energies show some undesirable dosimetric effects. This work is aimed at investigating the effects of different energy selection for low density tissues.

Patients And Methods: BEAMnrc was used to simulate simple treatment set-ups in a simple and a CT reconstructed lung phantom and an air-channel phantom.

View Article and Find Full Text PDF

A number of treatment-planning systems still use conventional correction methods for body inhomogeneities. Most of these methods (power law method, tissue-air ratio (TAR), etc.) consider only on-axis points, rectangular fields, and inhomogeneous slabs covering the whole irradiating field.

View Article and Find Full Text PDF

The choice of the appropriate model and parameter set in determining the relation between the incidence of radiation pneumonitis and dose distribution in the lung is of great importance, especially in the case of breast radiotherapy where the observed incidence is fairly low. From our previous study based on 150 breast cancer patients, where the fits of dose-volume models to clinical data were estimated (Tsougos et al 2005 Evaluation of dose-response models and parameters predicting radiation induced pneumonitis using clinical data from breast cancer radiotherapy Phys. Med.

View Article and Find Full Text PDF

The purpose of this work is to evaluate the predictive strength of the relative seriality, parallel and LKB normal tissue complication probability (NTCP) models regarding the incidence of radiation pneumonitis, in a large group of patients following breast cancer radiotherapy, and furthermore, to illustrate statistical methods for examining whether certain published radiobiological parameters are compatible with a clinical treatment methodology and patient group characteristics. The study is based on 150 consecutive patients who received radiation therapy for breast cancer. For each patient, the 3D dose distribution delivered to lung and the clinical treatment outcome were available.

View Article and Find Full Text PDF

Background: The estimation of the parameters that describe the dose-response relations of anal sphincter regarding the clinical endpoints of fecal leakage and blood or phlegm in stools is important in the optimization of prostate cancer radiotherapy. Also, the validity of the relative seriality model for this clinical case needs to be examined by associating the clinical follow-up results with the predicted complication rates.

Patients And Methods: In this study, 65 patients who received radiation therapy for clinically localized prostate adenocarcinoma are analyzed.

View Article and Find Full Text PDF

The purpose of this work is to provide some statistical methods for evaluating the predictive strength of radiobiological models and the validity of dose-response parameters for tumour control and normal tissue complications. This is accomplished by associating the expected complication rates, which are calculated using different models, with the clinical follow-up records. These methods are applied to 77 patients who received radiation treatment for head and neck cancer and 85 patients who were treated for arteriovenous malformation (AVM).

View Article and Find Full Text PDF

It is well known that considerable underdosage can occur at the edges of a tumor inside the lung because of the degradation of penumbra due to lack of lateral electronic equilibrium. Although present even at smaller energies, this phenomenon is more pronounced for higher energies. Apart from Monte Carlo calculation, most of the existing Treatment Planning Systems (TPSs) cannot deal at all, or with acceptable accuracy, with this effect.

View Article and Find Full Text PDF

A geometric solution of the problem of optimal orientation of beams in conformal external radiotherapy is presented. The method uses geometric derived quantities which consider the intersection volume between organs at risk (OAR) and the beam shape. In comparison to previous geometric methods a true 3D volume computation is used which takes into account beam divergence, concave shapes, as well as treatment settings such as individual beam shaping by blocks or multi-leaf collimators.

View Article and Find Full Text PDF

This study was carried out in order to derive the radiobiological parameters of the dose-response relation for the obliteration of arteriovenous malformation (AVM) following single fraction stereotactic radiotherapy. Furthermore, the accuracy by which the linear Poisson model predicts the probability of obliteration and how the haemorrhage history, location and volume of the AVM influence its radiosensitivity are investigated. The study patient material consists of 85 patients who received radiation for AVM therapy.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionu4ql3tgkdob20ii2v978ha8l0k6n808l): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once