Investigations of lipid membranes using NMR spectroscopy generally require isotopic labeling, often precluding structural studies of complex lipid systems. Solid-state (13)C magic-angle spinning NMR spectroscopy at natural isotopic abundance gives site-specific structural information that can aid in the characterization of complex biomembranes. Using the separated local-field experiment DROSS, we resolved (13)C-(1)H residual dipolar couplings that were interpreted with a statistical mean-torque model.
View Article and Find Full Text PDFMisfolding and aggregation of the intrinsically disordered protein α-Synuclein (αS) in Lewy body plaques are characteristic markers of late-stage Parkinson's disease. It is well established that membrane binding is initiated at the N-terminus of the protein and affects biasing of conformational ensembles of αS. However, little is understood about the effect of αS on the membrane lipid bilayer.
View Article and Find Full Text PDFTumor choline metabolites have potential for use as diagnostic indicators of breast cancer phenotype and can be non-invasively monitored in vivo by MRS. Extract studies have determined that the principle diagnostic component of these peaks is phosphocholine (PCho), the biosynthetic precursor to the membrane phospholipid, phosphatidylcholine (PtdCho). The ability to resolve and quantify PCho in vivo would improve the accuracy of this putative diagnostic tool.
View Article and Find Full Text PDFBiochim Biophys Acta
December 2007
Solid-state 2H NMR spectroscopy gives a powerful avenue to investigating the structures of ligands and cofactors bound to integral membrane proteins. For bacteriorhodopsin (bR) and rhodopsin, retinal was site-specifically labeled by deuteration of the methyl groups followed by regeneration of the apoprotein. 2H NMR studies of aligned membrane samples were conducted under conditions where rotational and translational diffusion of the protein were absent on the NMR time scale.
View Article and Find Full Text PDFCholine-containing compounds (CCCs) are elevated in breast cancer, and detected in vivo by the (1)H MRS total choline (tCho) resonance (3.25 ppm) and the (31)P MRS phosphomonoester (PME) resonance (3.8 ppm).
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
November 2002
In solid-state 2H NMR of fluid lipid bilayers, quasielastic deformations at MHz frequencies are detected as a square-law dependence of the nuclear spin-lattice (R(1Z)) relaxation rates and order parameters (S(CD)). The signature square-law slope is found to decrease progressively with the mole fraction of cholesterol and with the acyl chain length, due to a stiffening of the membrane. The correspondence to thermal vesicle fluctuations and molecular dynamics simulations implies that a broad distribution of modes is present, ranging from the membrane size down to the molecular dimensions.
View Article and Find Full Text PDF