Publications by authors named "Constance Y Fears"

Syndecans are a family of transmembrane heparan sulfate proteoglycans widely expressed in both developing and adult tissues. Until recently, their role in pathogenesis was largely unexplored. In this review, we discuss the reported involvement of syndecans in human cancers, infectious diseases, obesity, wound healing and angiogenesis.

View Article and Find Full Text PDF

Angiogenesis is the formation of new blood vessels from the existing vasculature and is necessary for tumor growth. Syndecan-2 (S2) is highly expressed in the microvasculature of mouse gliomas. When S2 expression was down-regulated in mouse brain microvascular endothelial cells (MvEC), this inhibited cell motility and reduced the formation of capillary tube-like structures in vitro.

View Article and Find Full Text PDF

Host antiangiogenesis factors defend against tumor growth. The matricellular protein, thrombospondin-2 (TSP-2), has been shown to act as an antiangiogenesis factor in a carcinogen-induced model of skin cancer. Here, using an in vivo malignant glioma model in which the characteristics of the tumors formed after intracerebral implantation of GL261 mouse glioma cells are assessed, we found that tumor growth and microvessel density were significantly enhanced in tumors propagated in TSP-2(-/-) mice.

View Article and Find Full Text PDF

Angiogenesis is necessary for tumor growth beyond a volume of approximately 2 mm(3). This observation, along with the accessibility of tumor vessels to therapeutic targeting, has resulted in a research focus on inhibitors of angiogenesis. A number of endogenous inhibitors of angiogenesis are found in the body.

View Article and Find Full Text PDF

Oncostatin-M (OSM), a hematopoietic cytokine, and vascular endothelial growth factor (VEGF), a quintessential angiogenic signal, are coexpressed in development, cancer and inflammation. Here, we report that OSM treatment of human astroglioma cell lines increases VEGF levels by approximately threefold. Interleukin-1beta (IL-1beta), in combination with OSM, induces up to sevenfold higher VEGF expression, without significantly inducing VEGF on its own.

View Article and Find Full Text PDF