Publications by authors named "Constance Voss"

LPL contains two principal domains: an amino-terminal catalytic domain (residues 1-297) and a carboxyl-terminal domain (residues 298-448) that is important for binding lipids and binding glycosylphosphatidylinositol-anchored high density lipoprotein binding protein 1 (GPIHBP1) (an endothelial cell protein that shuttles LPL to the capillary lumen). The LPL sequences required for GPIHBP1 binding have not been examined in detail, but one study suggested that sequences near LPL's carboxyl terminus (residues ∼403-438) were crucial. Here, we tested the ability of LPL-specific monoclonal antibodies (mAbs) to block the binding of LPL to GPIHBP1.

View Article and Find Full Text PDF

The S447X polymorphism in lipoprotein lipase (LPL), which shortens LPL by two amino acids, is associated with low plasma triglyceride levels and reduced risk for coronary heart disease. S447X carriers have higher LPL levels in the pre- and post-heparin plasma, raising the possibility that the S447X polymorphism leads to higher LPL levels within capillaries. One potential explanation for increased amounts of LPL in capillaries would be more avid binding of S447X-LPL to GPIHBP1 (the protein that binds LPL dimers and shuttles them to the capillary lumen).

View Article and Find Full Text PDF

Agonists of liver X receptors (LXR) α and β are important regulators of cholesterol metabolism, but agonism of the LXRα subtype appears to cause hepatic lipogenesis, suggesting LXRβ-selective activators are attractive new lipid lowering drugs. In this work, pharmacophore modeling and shape-based virtual screening were combined to predict new LXRβ-selective ligands. Out of the 10 predicted compounds, three displayed significant LXR activity.

View Article and Find Full Text PDF

Lipoprotein lipase (LPL) is a 448-amino-acid head-to-tail dimeric enzyme that hydrolyzes triglycerides within capillaries. LPL is secreted by parenchymal cells into the interstitial spaces; it then binds to GPIHBP1 (glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1) on the basolateral face of endothelial cells and is transported to the capillary lumen. A pair of amino acid substitutions, C418Y and E421K, abolish LPL binding to GPIHBP1, suggesting that the C-terminal portion of LPL is important for GPIHBP1 binding.

View Article and Find Full Text PDF

Interest in lipolysis and the metabolism of triglyceride-rich lipoproteins was recently reignited by the discovery of severe hypertriglyceridemia (chylomicronemia) in glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 (GPIHBP1)-deficient mice. GPIHBP1 is expressed exclusively in capillary endothelial cells and binds lipoprotein lipase (LPL) avidly. These findings prompted speculation that GPIHBP1 serves as a binding site for LPL in the capillary lumen, creating "a platform for lipolysis.

View Article and Find Full Text PDF

GPIHBP1, a glycosylphosphatidylinositol-anchored protein of capillary endothelial cells, shuttles lipoprotein lipase (LPL) from subendothelial spaces to the capillary lumen. An absence of GPIHBP1 prevents the entry of LPL into capillaries, blocking LPL-mediated triglyceride hydrolysis and leading to markedly elevated triglyceride levels in the plasma (i.e.

View Article and Find Full Text PDF

Glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 (GPIHBP1) is an endothelial cell protein that transports lipoprotein lipase (LPL) from the subendothelial spaces to the capillary lumen. GPIHBP1 contains two main structural motifs, an amino-terminal acidic domain enriched in aspartates and glutamates and a lymphocyte antigen 6 (Ly6) motif containing 10 cysteines. All of the cysteines in the Ly6 domain are disulfide-bonded, causing the protein to assume a three-fingered structure.

View Article and Find Full Text PDF

Objective: To define the ability of GPIHBP1 to bind other lipase family members and other apolipoproteins (apos) and lipoproteins.

Methods And Results: GPIHBP1, a GPI-anchored lymphocyte antigen (Ly)6 protein of capillary endothelial cells, binds lipoprotein lipase (LPL) avidly, but its ability to bind related lipase family members has never been evaluated. As judged by cell-based and cell-free binding assays, LPL binds to GPIHBP1, but other members of the lipase family do not.

View Article and Find Full Text PDF

Glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 (GPIHBP1), a GPI-anchored endothelial cell protein, binds lipoprotein lipase (LPL) and transports it into the lumen of capillaries where it hydrolyzes triglycerides in lipoproteins. GPIHBP1 is assumed to be expressed mainly within the heart, skeletal muscle, and adipose tissue, the sites where most lipolysis occurs, but the tissue pattern of GPIHBP1 expression has never been evaluated systematically. Because GPIHBP1 is found on the luminal face of capillaries, we predicted that it would be possible to define GPIHBP1 expression patterns with radiolabeled GPIHBP1-specific antibodies and positron emission tomography (PET) scanning.

View Article and Find Full Text PDF

Objective: To determine whether plasma triglyceride levels in adult Glycosylphosphatidylinositol HDL-binding protein 1 (GPIHBP1)-deficient (Gpihbp1(-/-)) mice would be sensitive to cholesterol intake.

Methods And Results: Gpihbp1(-/-) mice were fed a Western diet containing 0.15% cholesterol.

View Article and Find Full Text PDF

Black and white are opposites as are oxidation and reduction. Performing an oxidation, for example, of a sec-alcohol and a reduction of the corresponding ketone in the same vessel without separation of the reagents seems to be an impossible task. Here we show that oxidative cofactor recycling of NADP (+) and reductive regeneration of NADH can be performed simultaneously in the same compartment without significant interference.

View Article and Find Full Text PDF

Biocatalytic racemization of aliphatic and aryl-aliphatic sec-alcohols and alpha-hydroxyketones (acyloins) was accomplished using whole resting cells of bacteria, fungi, and one yeast. The mild (physiological) reaction conditions ensured the suppression of undesired side reactions, such as elimination or condensation. Cofactor and inhibitor studies suggest that the racemization proceeds through an equilibrium-controlled enzymatic oxidation-reduction sequence via the corresponding ketones or alpha-diketones, respectively, which were detected in various amounts.

View Article and Find Full Text PDF

An easy to use computerized algorithm for the determination of the amount of each labeled species differing in the number of incorporated isotope labels based on mass spectroscopic data is described and evaluated. Employing this algorithm, the microwave-assisted synthesis of various alpha-labeled deuterium ketones via hydrogen-deuterium exchange with deuterium oxide was optimized with respect to time, temperature, and degree of labeling. For thermally stable ketones the exchange of alpha-protons was achieved at 180 degrees C within 40-200 min.

View Article and Find Full Text PDF