Publications by authors named "Constance M Murphy"

A liquid chromatographic-electrospray ionization-tandem mass spectrometric method for the quantification of the opiates morphine, codeine, and their metabolites morphine-3-beta-D-glucuronide (M-3-G), morphine-6-beta-D-glucuronide (M-6-G) and codeine-6-beta-D-glucuronide (C-6-G) in human urine has been developed and validated. Identification and quantification were based on the following transitions: 286 to 201 and 229 for morphine, 300 to 215 and 243 for codeine, 462 to 286 [corrected] for M-3-G, 462 to 286 for M-6-G, and 476 to 300 for C-6-G. Calibration by linear regression analysis utilized deuterated internal standards and a weighting factor of 1/X.

View Article and Find Full Text PDF

This paper details a validated liquid chromatography atmospheric pressure chemical ionization tandem mass spectrometry (LC-APCI-MS/MS) method for the quantification of methadone, and its metabolites 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP), 2-ethyl-5-methyl-3,3-diphenylpyraline (EMDP) and methadol in human meconium. Limits of detection (LOD) were determined to be 1.0 ng/g for methadone, EDDP and EMDP and 2.

View Article and Find Full Text PDF

A liquid chromatographic/electrospray ionization tandem mass spectrometric method for the quantification of the synthetic opiate buprenorphine (BUP), norbuprenorphine (NBUP), buprenorphine-3-beta-D-glucuronide (BUP-3-G) and norbuprenorphine-3-beta-D-glucuronide (NBUP-3-G) in human plasma was developed and validated. Identification and quantification were based on the following transitions: m/z 468 to 396 and 414 for BUP, m/z 414 to 326 and 340 for NBUP, m/z 644 to 468 for BUP-3-G and m/z 590 to 414 for NBUP-3-G. Calibration by linear regression analysis utilized deuteratated internal standards and a weighting factor of 1/x.

View Article and Find Full Text PDF

The purpose of the present work was to evaluate the synergistic effect of ionization type, sample preparation technique, and bio-fluid on the presence of matrix effect in quantitative liquid chromatography (LC)-MS/MS analysis of illicit drugs by post-column infusion experiments with morphine (10-microg/mL solution). Three bio-fluids (urine, oral fluid, and plasma) were pretreated with four sample preparation procedures [direct injection, dilution, protein precipitation, solid-phase extraction (SPE)] and analyzed by both LC-electrospray ionization (ESI)-MS/MS and LC-atmospheric pressure chemical ionization (APCI)-MS/MS. Our results indicated that both ionization types showed matrix effect, but ESI was more susceptible than APCI.

View Article and Find Full Text PDF

A sensitive and specific liquid chromatography/tandem mass spectrometry (LC/MS/MS) method for the simultaneous quantification of opioids, cocaine, and metabolites in urine was developed and validated. A 10-microL aliquot of urine was injected directly onto the LC/MS/MS system. The lack of sample preparation substantially reduced total analysis time.

View Article and Find Full Text PDF

A quantitative LC-APCI-MS/MS method for simultaneous determination of multiple illicit drugs, methadone, and their metabolites in oral fluid was developed and validated. Sample pretreatment was limited to acetonitrile protein precipitation. LC separation was performed in 25.

View Article and Find Full Text PDF

Two modes of high-speed counter-current chromatography (HSCCC) were applied to separate 3- and 4-sulfophthalic acid from a mixture. Conventional HSCCC was useful for the separation of up to several hundred milligram quantities of these positional isomers, while pH-zone-refining CCC was implemented successfully to separations at the multigram level. The conventional HSCCC separations were performed with a standard J-type HSCCC system that has a superior resolution but a lower level of retention of the stationary phase of the biphasic solvent system used (acidified n-butanol-water).

View Article and Find Full Text PDF