Pharmacological inhibition of CHK1 in the absence of p53 functionality leads to abrogation of the S and G2/M DNA damage checkpoints. We report the preclinical therapeutic activity of LY2603618 (CHK1 inhibitor) at inhibiting CHK1 activation by gemcitabine and enhancing in vivo efficacy. The in vivo biochemical effects of CHK1 inhibition in the absence or presence of DNA damage were measured in human tumor xenograft models.
View Article and Find Full Text PDFCHK1 is a multifunctional protein kinase integral to both the cellular response to DNA damage and control of the number of active replication forks. CHK1 inhibitors are currently under investigation as chemopotentiating agents due to CHK1's role in establishing DNA damage checkpoints in the cell cycle. Here, we describe the characterization of a novel CHK1 inhibitor, LY2606368, which as a single agent causes double-stranded DNA breakage while simultaneously removing the protection of the DNA damage checkpoints.
View Article and Find Full Text PDFThe design, synthesis, and structure activity relationships for a novel series of indoles as potent, selective, thyroid hormone receptor β (TRβ) agonists is described. Compounds with >50× binding selectivity for TRβ over TRα were generated and evaluation of compound 1c from this series in a model of dyslipidemia demonstrated positive effects on plasma lipid endpoints in vivo.
View Article and Find Full Text PDFInterference with DNA damage checkpoints has been demonstrated preclinically to be a highly effective means of increasing the cytotoxicity of a number of DNA-damaging cancer therapies. Cell cycle arrest at these checkpoints protects injured cells from apoptotic cell death until DNA damage can be repaired. In the absence of functioning DNA damage checkpoints, cells with damaged DNA may proceed into premature mitosis followed by cell death.
View Article and Find Full Text PDF