Background And Importance: Trephination is a procedure in which a small hole is made in the skull. Rare cases of self-trephination by individuals seeking medical benefit have been reported. Excoriation disorder is a compulsive skin-picking condition in which an individual self-inflicts cutaneous lesions.
View Article and Find Full Text PDFPatients with peripheral artery disease (PAD) have increased mortality rates and a myopathy in their affected legs which is characterized by increased oxidative damage, reduced antioxidant enzymatic activity and defective mitochondrial bioenergetics. This study evaluated the hypothesis that increased levels of oxidative damage in gastrocnemius biopsies from patients with PAD predict long-term mortality rates. Oxidative damage was quantified as carbonyl adducts in myofibers of the gastrocnemius of PAD patients.
View Article and Find Full Text PDFBackground: Rosette-forming glioneuronal tumors (RGNTs) are rare tumors composed of mixed glial and neurocytic components. Most lesions are confined to the posterior fossa, especially in the region of the fourth ventricle, in young adults. In few instances, diffuse involvement of the supratentorial region is identified, thereby creating significant challenges in diagnosis, surgical intervention, and prognostication.
View Article and Find Full Text PDFClosed-head traumatic brain injury (TBI) is induced by rapid motion of the head, resulting in diffuse strain fields throughout the brain. The injury mechanism(s), loading thresholds, and neuroanatomical distribution of affected cells remain poorly understood, especially in the gyrencephalic brain. We utilized a porcine model to explore the relationships between rapid head rotational acceleration-deceleration loading and immediate alterations in plasmalemmal permeability within cerebral cortex, sub-cortical white matter, and hippocampus.
View Article and Find Full Text PDFPeripheral artery disease (PAD), a severe atherosclerotic condition primarily of the elderly, afflicts 200 million individuals, worldwide, and is associated with lower extremity myopathy. Circulating markers of inflammation have been linked to risk and severity of PAD but the contribution of local inflammation to myopathy remains unknown. We evaluated, by ELISA, calf muscle of PAD patients (N = 23) and control subjects (N = 18) for local expression of inflammatory cytokines including Granulocyte/Monocyte Colony-Stimulating Factor (GM-CSF), Interleukin 17A (IL-17A), Interferon ϒ (IFN-ϒ), tumor necrosis factor α (TNF-α), and Interleukin 6 (IL-6).
View Article and Find Full Text PDFWork from our laboratory documents pathological events, including myofiber oxidative damage and degeneration, myofibrosis, micro-vessel (diameter = 50-150 μm) remodeling, and collagenous investment of terminal micro-vessels (diameter ≤ 15 µm) in the calf muscle of patients with Peripheral Artery Disease (PAD). In this study, we evaluate the hypothesis that the vascular pathology associated with the legs of PAD patients encompasses pathologic changes to the smallest micro-vessels in calf muscle. Biopsies were collected from the calf muscle of control subjects and patients with Fontaine Stage II and Stage IV PAD.
View Article and Find Full Text PDFBackground: Development of collateral vasculature is key in compensating for arterial occlusions in patients with peripheral artery disease (PAD). We aimed to examine the development of collateral pathways after ligation of native vessels in a porcine model of PAD.
Methods: Right hindlimb ischemia was induced in domestic swine (n = 11) using two versions of arterial ligation.
Peripheral artery disease (PAD) is a common atherosclerotic disease characterized by narrowed or blocked arteries in the lower extremities. Circulating serum biomarkers can provide significant insight regarding the disease progression. Here, we explore the metabolomics signatures associated with different stages of PAD and investigate potential mechanisms of the disease.
View Article and Find Full Text PDFThoracic aortic aneurysm and dissection are life-threatening complications of Marfan syndrome (MFS). Studies of human and mouse aortic samples from late stage MFS demonstrate increased TGF-β activation/signaling and diffuse matrix changes. However, the role of the aortic smooth muscle cell (SMC) phenotype in early aneurysm formation in MFS has yet to be fully elucidated.
View Article and Find Full Text PDFHippocampal-dependent deficits in learning and memory formation are a prominent feature of traumatic brain injury (TBI); however, the role of the hippocampus in cognitive dysfunction after concussion (mild TBI) is unknown. We therefore investigated functional and structural changes in the swine hippocampus following TBI using a model of head rotational acceleration that closely replicates the biomechanics and neuropathology of closed-head TBI in humans. We examined neurophysiological changes using a novel ex vivo hippocampal slice paradigm with extracellular stimulation and recording in the dentate gyrus and CA1 occurring at 7 days following non-impact inertial TBI in swine.
View Article and Find Full Text PDFDespite increasing appreciation of the critical role that neuroinflammatory pathways play in brain injury and neurodegeneration, little is known about acute microglial reactivity following diffuse traumatic brain injury (TBI) - the most common clinical presentation that includes all concussions. Therefore, we investigated acute microglial reactivity using a porcine model of closed-head rotational velocity/acceleration-induced TBI that closely mimics the biomechanical etiology of inertial TBI in humans. We observed rapid microglial reactivity within 15min of both mild and severe TBI.
View Article and Find Full Text PDFProminent neuropathology following trauma, stroke, and various neurodegenerative diseases includes neuronal degeneration as well as loss of long-distance axonal connections. While cell replacement and axonal pathfinding strategies are often explored independently, there is no strategy capable of simultaneously replacing lost neurons and re-establishing long-distance axonal connections in the central nervous system. Accordingly, we have created micro-tissue engineered neural networks (micro-TENNs), which are preformed constructs consisting of long integrated axonal tracts spanning discrete neuronal populations.
View Article and Find Full Text PDF