Publications by authors named "Consonni V"

Bio-valorization of agri-food wastes lies in their possible conversion into fermented foodstuffs/beverages and/or biodegradable polymers such as bacterial cellulose. In this study, three different kombucha cultures were formulated using agri-food waste materials, citrus fruit residues and used coffee grounds, as alternative carbon and nitrogen sources, respectively. Over 21 days of fermentation, the kinetic profile was followed by monitoring cell number, pH variation, minerals, trace elements and production of bacterial cellulose.

View Article and Find Full Text PDF

The chemical bath deposition (CBD) process enables the deposition of ZnO nanowires (NWs) on various substrates with customizable morphology. However, the hydrogen-rich CBD environment introduces numerous hydrogen-related defects, unintentionally doping the ZnO NWs and increasing their electrical conductivity. The oxygen-based plasma treatment can modify the nature and amount of these defects, potentially tailoring the ZnO NW properties for specific applications.

View Article and Find Full Text PDF

The development of innovative heterostructures made of ZnO nanowires is of great interest for enhancing the performances of many devices in the fields of optoelectronics, photovoltaics, and energy harvesting. We report an original fabrication process to form ZnO/ZnGaO core-shell nanowire heterostructures in the framework of the wet chemistry techniques. The process involves the partial chemical conversion of ZnO nanowires grown via chemical bath deposition into ZnO/ZnGaO core-shell nanowire heterostructures with a high interface quality following their immersion in an aqueous solution containing gallium nitrate heated at a low temperature.

View Article and Find Full Text PDF

Natural products are a diverse class of compounds with promising biological properties, such as high potency and excellent selectivity. However, they have different structural motifs than typical drug-like compounds, e.g.

View Article and Find Full Text PDF

As a biocompatible semiconductor composed of abundant elements, ZnO, in the form of nanowires, exhibits remarkable properties, mainly originating from its wurtzite structure and correlated with its high aspect ratio at nanoscale dimensions [...

View Article and Find Full Text PDF

The capacity to discriminate safe from dangerous compounds has played an important role in the evolution of species, including human beings. Highly evolved senses such as taste receptors allow humans to navigate and survive in the environment through information that arrives to the brain through electrical pulses. Specifically, taste receptors provide multiple bits of information about the substances that are introduced orally.

View Article and Find Full Text PDF

The growth of GaOOH by chemical bath deposition has received great attention over the past years as a first step to form GaO with the α- or β-phases by combining a wet chemical route with thermal annealing in air. By using gallium nitrate and sodium hydroxide in aqueous solution, we show that the structural morphology of GaOOH deposits is thoroughly tunable in terms of both dimensions, density, and nature by varying the initial pH value from acidic to basic conditions. In the low-pH region associated with a low supersaturation level and where Ga ions represent the dominant Ga(III) species, GaOOH microrods with a low aspect ratio and low density prevail.

View Article and Find Full Text PDF

The simultaneous co-doping of ZnO nanowires grown by chemical bath deposition is of high interest for a large number of engineering devices, but the process conditions required and the resulting physicochemical processes are still largely unknown. Herein, we show that the simultaneous co-doping of ZnO nanowires with Al and Ga following the addition of Al(NO) and Ga(NO) in the chemical bath operates in a narrow range of conditions in the high-pH region, where the adsorption processes of respective Al(OH) and Ga(OH) complexes on the positively charged -plane sidewalls are driven by attractive electrostatic forces. The structural morphology and properties of ZnO nanowires are significantly affected by the co-doping and mainly governed by the effect of Al(III) species.

View Article and Find Full Text PDF

According to the 2021 World Drug Report, around 275 million people use drugs of abuse, and 36 million people suffer from addiction, fostering a thriving market for illicit substances. In Italy, 30,083 people were reported to the Judicial Authority for offenses in violation of the Italian Law D.P.

View Article and Find Full Text PDF

Mass spectrometry (MS) is widely used for the identification of chemical compounds by matching the experimentally acquired mass spectrum against a database of reference spectra. However, this approach suffers from a limited coverage of the existing databases causing a failure in the identification of a compound not present in the database. Among the computational approaches for mining metabolite structures based on MS data, one option is to predict molecular fingerprints from the mass spectra by means of chemometric strategies and then use them to screen compound libraries.

View Article and Find Full Text PDF

ZnO nanowires (NWs) grown by chemical bath deposition (CBD) have received great interest for nanoscale engineering devices, but their formation in aqueous solution containing many impurities needs to be carefully addressed. In particular, the pH of the CBD solution and its effect on the formation mechanisms of ZnO NWs and of nitrogen- and hydrogen-related defects in their center are still unexplored. By adjusting its value in a low- and high-pH region, we show the latent evolution of the morphological and optical properties of ZnO NWs, as well as the modulated incorporation of nitrogen- and hydrogen-related defects in their center using Raman and cathodoluminescence spectroscopy.

View Article and Find Full Text PDF

Piezoelectric ZnO-based composites have been explored as a flexible and compact sensor for the implantable biomedical systems used in cardio surgery. In this work, a progressive development route was investigated to enhance the performance of piezoelectric composites incorporated with different shape, concentration and connectivity of ZnO fillers. ZnO microrods (MRs) have been successfully synthesized homogeneously in aqueous solution using a novel process-based on chemical bath deposition (CBD) method.

View Article and Find Full Text PDF

The formation of nanowires by chemical bath deposition is of great interest for a wide variety of optoelectronic, piezoelectric, and sensing devices, from which the theoretical description of their elongation process has emerged as a critical issue. Despite its strong influence on the nanowire growth kinetics, reactor size has typically not been taken into account in the theoretical modeling developed so far. We report a new theoretical description of the axial growth rate of nanowires in dynamic conditions based on the solution of Fick's diffusion equations, implementing a sealed reactor of finite height as a varying parameter.

View Article and Find Full Text PDF

Extremely thin absorber (ETA) solar cells made of ZnO/TiO/SbS core-shell nanowire heterostructures, using P3HT as the hole-transporting material (HTM), are of high interest to surpass solar cell efficiencies of their planar counterpart at lower material cost. However, no dimensional optimization has been addressed in detail, as it raises material and technological critical issues. In this study, the thickness of the SbS shell grown by chemical spray pyrolysis is tuned from a couple of nanometers to several tens of nanometers, while switching from a partially to a fully crystallized shell.

View Article and Find Full Text PDF

The selection of the polarity of ZnO nanowires grown by chemical bath deposition offers a great advantage for their integration into a wide variety of engineering devices. However, the nucleation process of ZnO nanowires and its dependence on their polarity is still unknown despite its importance for optimizing their morphology and properties and thus to enhance the related device performances. To tackle this major issue, we combine an analysis of the nucleation process of O- and Zn-polar ZnO nanowires on O- and Zn-polar ZnO single crystals, respectively, using synchrotron radiation-based grazing incidence X-ray diffraction with transmission and scanning electron microscopy.

View Article and Find Full Text PDF

Neural networks are rapidly gaining popularity in chemical modeling and Quantitative Structure-Activity Relationship (QSAR) thanks to their ability to handle multitask problems. However, outcomes of neural networks depend on the tuning of several hyperparameters, whose small variations can often strongly affect their performance. Hence, optimization is a fundamental step in training neural networks although, in many cases, it can be very expensive from a computational point of view.

View Article and Find Full Text PDF

Due to the outstanding coupling between piezoelectric and semiconducting properties of zinc oxide nanowires, ZnO NW-based structures have been demonstrating promising potential with respect to their applicability in piezoelectric, piezotronic and piezo-phototronic devices. Particularly considering their biocompatibility and biosafety for applications regarding implantable medical detection, this paper proposed a new concept of piezoelectric composite, i.e.

View Article and Find Full Text PDF

Background: Humans are exposed to tens of thousands of chemical substances that need to be assessed for their potential toxicity. Acute systemic toxicity testing serves as the basis for regulatory hazard classification, labeling, and risk management. However, it is cost- and time-prohibitive to evaluate all new and existing chemicals using traditional rodent acute toxicity tests.

View Article and Find Full Text PDF

ZnO nanowires are excellent candidates for energy harvesters, mechanical sensors, piezotronic and piezophototronic devices. The key parameters governing the general performance of the integrated devices include the dimensions of the ZnO nanowires used, their doping level, and surface trap density. However, although the method used to grow these nanowires has a strong impact on these parameters, its influence on the performance of the devices has been neither elucidated nor optimized yet.

View Article and Find Full Text PDF

The controlled incorporation of dopants like copper into ZnO nanowires (NWs) grown by chemical bath deposition (CBD) is still challenging despite its critical importance for the development of piezoelectric devices. In this context, the effects of the addition of copper nitrate during the CBD of ZnO NWs grown on Au seed layers are investigated in detail, where zinc nitrate and hexamethylenetetramine are used as standard chemical precursors and ammonia as an additive to tune the pH. By combining thermodynamic simulations with chemical and structural analyses, we show that copper oxide nanocrystals simultaneously form with ZnO NWs during the CBD process in the low-pH region associated with large supersaturation of Cu species.

View Article and Find Full Text PDF

β-GaO microrods have attracted increasing attention for their integration into solar blind/UV photodetectors and gas sensors. However, their synthesis using a low-temperature chemical route in aqueous solution is still under development, and the physicochemical processes at work have not yet been elucidated. Here, we develop a double-step process involving the growth of α-GaOOH microrods on silicon using chemical bath deposition and their further structural conversion to β-GaO microrods by postdeposition thermal treatment.

View Article and Find Full Text PDF

Purpose: The length of time a critically ill coronavirus disease 2019 (COVID-19) patient remains infectious and should therefore be isolated remains unknown. This prospective study was undertaken in critically ill patients to evaluate the reliability of single negative real-time polymerase chain reaction (RT-PCR) in lower tracheal aspirates (LTA) in predicting a second negative test and to analyze clinical factors potentially influencing the viral shedding.

Methods: From April 9, 2020 onwards, intubated COVID-19 patients treated in the intensive care unit were systematically evaluated for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by RT-PCR of nasopharyngeal swabs and LTA.

View Article and Find Full Text PDF