Publications by authors named "Consolati G"

The sensitivity of positron annihilation characteristics to changes in the molecular packing in network-forming polymers has been demonstrated since the early 1980s. Positron annihilation lifetime spectroscopy (PALS) is a unique technique that can provide direct information on the free volume in polymers through the experimental parameters of the free volume hole distribution, their mean value, and volume fraction. This knowledge is currently applied for PALS investigations on the main processes that govern the molecular organization in some green polymers when subjected to different synthesis procedures or environmental conditions (humidity, physical aging, temperature).

View Article and Find Full Text PDF

Positronium (Ps) is a valuable probe to investigate nanometric or sub-nanometric cavities in non-metallic materials, where Ps can be confined. Accessible experimental measurements concern the lifetime of trapped Ps, which is largely influenced by pick-off processes, depending on the size of the cavity as well as on the density of the electrons belonging to the surface of the host trap. Another relevant physical quantity is the contact density, that is the electron density at the positron position, which is usually found to be well below the vacuum value.

View Article and Find Full Text PDF

We report on laser cooling of a large fraction of positronium (Ps) in free flight by strongly saturating the 1^{3}S-2^{3}P transition with a broadband, long-pulsed 243 nm alexandrite laser. The ground state Ps cloud is produced in a magnetic and electric field-free environment. We observe two different laser-induced effects.

View Article and Find Full Text PDF

We show, for the first time, radio measurements of the depth of shower maximum (X_{max}) of air showers induced by cosmic rays that are compared to measurements of the established fluorescence method at the same location. Using measurements at the Pierre Auger Observatory we show full compatibility between our radio and the previously published fluorescence dataset, and between a subset of air showers observed simultaneously with both radio and fluorescence techniques, a measurement setup unique to the Pierre Auger Observatory. Furthermore, we show radio X_{max} resolution as a function of energy and demonstrate the ability to make competitive high-resolution X_{max} measurements with even a sparse radio array.

View Article and Find Full Text PDF

Positron annihilation lifetime spectroscopy (PALS) is a valuable technique to investigate defects in solids, such as vacancy clusters and grain boundaries in metals and alloys, as well as lattice imperfections in semiconductors. Positron spectroscopy is able to reveal the size, structure and concentration of vacancies with a sensitivity of 10. In the field of porous and amorphous systems, PALS can probe cavities in the range from a few tenths up to several tens of nm.

View Article and Find Full Text PDF

Instantons, which are nonperturbative solutions to Yang-Mills equations, provide a signal for the occurrence of quantum tunneling between distinct classes of vacua. They can give rise to decays of particles otherwise forbidden. Using data collected at the Pierre Auger Observatory, we search for signatures of such instanton-induced processes that would be suggestive of super-heavy particles decaying in the Galactic halo.

View Article and Find Full Text PDF

The temperature dependence of free volume in dimethacrylates (poly2M), cured by direct irradiation (poly2M-A) or a mask (poly2M-B), and in a thiol-based 2M sample (poly2M--EDDT), was investigated by positron annihilation lifetime spectroscopy (PALS) and dilatometry (DIL) to study the influence of thiol regulation on the microstructure free volume characteristics. It was found that the free volume fraction as determined from experimental data by using the standard spherical approach for the hole shapes showed systematic differences from the analogous quantity as evaluated from the lattice-hole theory. Much better results were obtained for cylindrical holes, which expand 'anisotropically' in poly2M samples and 'isotropically' in the poly2M--EDDT resin.

View Article and Find Full Text PDF

Positronium atoms (Ps) are commonly employed as a probe to characterize nanometric or subnanometric voids or vacancies in nonmetallic materials, where Ps can end up confined. The annihilation lifetime of a trapped Ps is strongly modified by pickoff and depends on the cavity size and on the electron density in the confining cavity surface. Here, we develop a theory of the Ps annihilation in nanocavities based on the fundamental role of the exchange correlations between the Ps-electron and the outer electrons, which are not usually considered but must be considered to correctly theorize the pickoff annihilation processes.

View Article and Find Full Text PDF

We present the first measurement of the fluctuations in the number of muons in extensive air showers produced by ultrahigh energy cosmic rays. We find that the measured fluctuations are in good agreement with predictions from air shower simulations. This observation provides new insights into the origin of the previously reported deficit of muons in air shower simulations and constrains models of hadronic interactions at ultrahigh energies.

View Article and Find Full Text PDF

The free volume fraction of a macromolecular structure can be assessed theoretically by using a suitable model; however, it can also be evaluated from experimental data obtained from dilatometry and positron annihilation lifetime spectra. In this second case, a regular geometry of the sub-nanometric cavities forming the free volume has to be assumed, although in fact they are irregularly shaped. The most popular approach is to guess spherical holes, which implies an isotropic growth of these last with temperature.

View Article and Find Full Text PDF

We report a measurement of the energy spectrum of cosmic rays above 2.5×10^{18}  eV based on 215 030 events. New results are presented: at about 1.

View Article and Find Full Text PDF

Positronium atoms (Ps) are widely used as a probe to characterize voids or vacancies in non-metallic materials. The annihilation lifetime of trapped Ps is strongly modified by pickoff, depending on the cavity size and on the appropriate external electron density. The connection between these material characteristics and Ps annihilation lifetimes is usually based on models that do not consider the requirements of full electron indistinguishability, that must be taken into account for a correct description of pickoff annihilation processes.

View Article and Find Full Text PDF

The efficient production of cold antihydrogen atoms in particle traps at CERN's Antiproton Decelerator has opened up the possibility of performing direct measurements of the Earth's gravitational acceleration on purely antimatter bodies. The goal of the AEgIS collaboration is to measure the value of for antimatter using a pulsed source of cold antihydrogen and a Moiré deflectometer/Talbot-Lau interferometer. The same antihydrogen beam is also very well suited to measuring precisely the ground-state hyperfine splitting of the anti-atom.

View Article and Find Full Text PDF

Meeting the increasing demand of clean water requires the development of novel efficient adsorbent materials for the removal of organic pollutants. In this context the use of natural, renewable sources is of special relevance and sepia melanin, thanks to its ability to bind a variety of organic and inorganic species, has already attracted interest for water purification. Here we describe the synthesis of a material obtained by the combination of sepia melanin and poly(ethylene--maleic anhydride) (P(E--MA)).

View Article and Find Full Text PDF

Positronium (Ps) is widely used as a probe for studying nanometric porosities in condensed matter. Accessible experimental measurements concern annihilation rates by pickoff processes and contact densities (the electron density at the positron position). Existing models for describing Ps properties in small cavities do not justify the lowering of the contact density with respect to that of Ps in vacuum, as found in most materials.

View Article and Find Full Text PDF

Nanoparticle-loaded polymer brushes are powerful tools for the development of innovative devices. However, their characterization is challenging and arrays of different techniques are typically required to gain sufficient insight. Here we demonstrate for the first time the suitability of positron annihilation spectroscopy (PAS) to investigate, with unprecedented detail and without making the least damage to samples, the physico-chemical changes experienced by pH-responsive polymer brushes after protonation and after loading of silver nanoparticles.

View Article and Find Full Text PDF

The electron density at the positron (contact density) in the ground state positronium (Ps) formed in condensed matter is generally found to be lower than in vacuum. This is usually attributed to microscopic electric fields which polarize Ps, by acting on the two particles of the atom. In this paper we quantitatively investigate an opposite effect.

View Article and Find Full Text PDF

The precise measurement of forces is one way to obtain deep insight into the fundamental interactions present in nature. In the context of neutral antimatter, the gravitational interaction is of high interest, potentially revealing new forces that violate the weak equivalence principle. Here we report on a successful extension of a tool from atom optics--the moiré deflectometer--for a measurement of the acceleration of slow antiprotons.

View Article and Find Full Text PDF

The features of positronium in an amorphous copolymer (polyvinyl acetate-crotonic acid) in a range of temperatures including the glass transition were investigated by means of positron annihilation lifetime spectroscopy. In particular, para-positronium lifetime was found to be longer than in a vacuum and to decrease with the temperature. This was attributed to the electron density at the positron (contact density), which is lower than in vacuo due to the presence of polar groups in the copolymer.

View Article and Find Full Text PDF

Antimatter is barely known by the chemist community and this article has the vocation to explain how antimatter, in particular antihydrogen, can be obtained, as well as to show how mesoporous materials could be used as a further improvement for the production of antimatter at very low temperatures (below 1 K). The first experiments with mesoporous materials highlighted in this review show very promising and exciting results. Mesoporous materials such as mesoporous silicon, mesoporous material films, pellets of MCM-41 and silica aerogel show remarkable features for antihydrogen formation.

View Article and Find Full Text PDF

A systematic study on the evolution of free volume as a function of the temperature in vulcanized at 433 K natural rubber (NR) and styrene butadiene rubber (SBR) in 25-75, 50-50, 75-25 NR-SBR (percent content of pure NR and SBR, respectively) blends was studied by positron annihilation lifetime spectroscopy. All samples were prepared with sulfur and TBBS (n-t-butyl-2-benzothiazole sulfenamide) as accelerator. The glass transition temperatures of the samples studied were determined by differential scanning calorimetry (DSC) and from lifetime data.

View Article and Find Full Text PDF

To determine the free volume in polymers, positron annihilation lifetime spectroscopy data are transformed into nanohole volumes by modeling the cavities as spheres or, more generally, using geometries assuming an isotropic thermal expansion. However, this guess could be unrealistic owing to the irregular shape of nanoholes and constrained movements of the macromolecules. In this work, it is shown that a comparison of hole-lattice theory with positron and dilatometric data for a homologous series of perfluoropolyethers supplies information on the anisotropic expansion of nanoholes; the relation between volume and typical unconstrained size of the cavities can be expressed by a power law with noninteger exponents.

View Article and Find Full Text PDF