Publications by authors named "Conrad W Mullineaux"

During their evolution from cyanobacteria, plastids have relinquished most of their genes to the host cell nucleus, but have retained a core set of genes that are transcribed and translated within the organelle. Previous explanations have included incompatible codon or base composition, problems importing certain proteins across the double membrane, or the need for tight regulation in concert with the redox status of the electron transport chain. In this opinion article we propose the 'mRNA targeting hypothesis'.

View Article and Find Full Text PDF

Heterocyst-forming cyanobacteria such as () sp. PCC 7120 exhibit extensive remodeling of their thylakoid membranes during heterocyst differentiation. Here we investigate the sites of translation of thylakoid membrane proteins in vegetative cells and developing heterocysts, using mRNA fluorescent hybridization (FISH) to detect the location of specific mRNA species.

View Article and Find Full Text PDF

In the next 10-20 years, several observatories will aim to detect the signatures of oxygenic photosynthesis on exoplanets, though targets must be carefully selected. Most known potentially habitable exo-planets orbit cool M-dwarf stars, which have limited emission in the photosynthetically active region of the spectrum (PAR, nm) used by Earth's oxygenic photoautotrophs. Still, recent experiments have shown that model cyanobacteria, algae, and non-vascular plants grow comfortably under simulated M-dwarf light, though vascular plants struggle.

View Article and Find Full Text PDF
Article Synopsis
  • Photosynthesis is a crucial process that transforms sunlight into chemical energy, vital for life on Earth, but there are still many unknowns about how it works and has evolved.
  • Researchers are focusing on fundamental aspects of photosynthesis like light-dependent reactions, photorespiration, and C4 metabolism to unravel these mysteries.
  • The commentary highlights key unanswered questions in the field, aiming to inspire further research and understanding of photosynthetic processes.
View Article and Find Full Text PDF

Cyanobacteria show an unusually complex prokaryotic cell structure including a distinct intracytoplasmic membrane system, the thylakoid membranes that are the site of the photosynthetic light reactions. The thylakoid and plasma membranes have sharply distinct proteomes, but the mechanisms that target proteins to a specific membrane remain poorly understood. Here, we investigate the locations of translation of thylakoid and plasma membrane proteins in the model unicellular cyanobacterium PCC 7942.

View Article and Find Full Text PDF

The regulatory protein CP12 can bind glyceraldehyde 3-phosphate dehydrogenase (GapDH) and phosphoribulokinase (PRK) in oxygenic phototrophs, thereby switching on and off the flux through the Calvin-Benson cycle (CBC) under light and dark conditions, respectively. However, it can be assumed that CP12 is also regulating CBC flux under further conditions associated with redox changes. To prove this hypothesis, the mutant Δ of the model cyanobacterium sp.

View Article and Find Full Text PDF

Photosynthetic light-harvesting antennae are pigment-binding proteins that perform one of the most fundamental tasks on Earth, capturing light and transferring energy that enables life in our biosphere. Adaptation to different light environments led to the evolution of an astonishing diversity of light-harvesting systems. At the same time, several strategies have been developed to optimize the light energy input into photosynthetic membranes in response to fluctuating conditions.

View Article and Find Full Text PDF

Cyanobacteria, ubiquitous oxygenic photosynthetic bacteria, interact with the environment and their surrounding microbiome through the secretion of a variety of small molecules and proteins. The release of these compounds is mediated by sophisticated multiprotein complexes, also known as secretion systems. Genomic analyses indicate that protein and metabolite secretion systems are widely found in cyanobacteria; however, little is known regarding their function, regulation, and secreted effectors.

View Article and Find Full Text PDF

The cyanobacterium secretes a specific sulphated polysaccharide to form floating cell aggregates.

View Article and Find Full Text PDF

How thylakoid membranes are generated to form a metabolically active membrane network and how thylakoid membranes orchestrate the insertion and localization of protein complexes for efficient electron flux remain elusive. Here, we develop a method to modulate thylakoid biogenesis in the rod-shaped cyanobacterium Synechococcus elongatus PCC 7942 by modulating light intensity during cell growth, and probe the spatial-temporal stepwise biogenesis process of thylakoid membranes in cells. Our results reveal that the plasma membrane and regularly arranged concentric thylakoid layers have no physical connections.

View Article and Find Full Text PDF

In filamentous heterocyst-forming (N-fixing) cyanobacteria, septal junctions join adjacent cells, mediating intercellular communication, and are thought to traverse the septal peptidoglycan through nanopores. Fluorescence recovery after photobleaching (FRAP) analysis with the fluorescent marker calcein showed that cultures of sp. strain PCC 7120 grown in the presence of combined nitrogen contained a substantial fraction of noncommunicating cells (58% and 80% of the tested vegetative cells in nitrate- and ammonium-grown cultures, respectively), whereas cultures induced for nitrogen fixation contained far fewer noncommunicating cells (16%).

View Article and Find Full Text PDF

Type IV pili (T4P) are proteinaceous filaments found on the cell surface of many prokaryotic organisms and convey twitching motility through their extension/retraction cycles, moving cells across surfaces. In cyanobacteria, twitching motility is the sole mode of motility properly characterised to date and is the means by which cells perform phototaxis, the movement towards and away from directional light sources. The wavelength and intensity of the light source determine the direction of movement and, sometimes in concert with nutrient conditions, act as signals for some cyanobacteria to form mucoid multicellular assemblages.

View Article and Find Full Text PDF

The thylakoid membranes of cyanobacteria form a complex intracellular membrane system with a distinctive proteome. The sites of biogenesis of thylakoid proteins remain uncertain, as do the signals that direct thylakoid membrane-integral proteins to the thylakoids rather than to the plasma membrane. Here, we address these questions by using fluorescence in situ hybridization to probe the subcellular location of messenger RNA molecules encoding core subunits of the photosystems in two cyanobacterial species.

View Article and Find Full Text PDF

Photosynthetic membranes are typically densely packed with proteins, and this is crucial for their function in efficient trapping of light energy. Despite being crowded with protein, the membranes are fluid systems in which proteins and smaller molecules can diffuse. Fluidity is also crucial for photosynthetic function, as it is essential for biogenesis, electron transport, and protein redistribution for functional regulation.

View Article and Find Full Text PDF

Cyanobacterial thylakoid membranes represent the active sites for both photosynthetic and respiratory electron transport. We used high-resolution atomic force microscopy to visualize the native organization and interactions of photosynthetic complexes within the thylakoid membranes from the model cyanobacterium Synechococcus elongatus PCC 7942. The thylakoid membranes are heterogeneous and assemble photosynthetic complexes into functional domains to enhance their coordination and regulation.

View Article and Find Full Text PDF

Multicellularity in played a key role in their habitat expansion, contributing to the Great Oxidation Event around 2.45 billion to 2.32 billion years ago.

View Article and Find Full Text PDF

Motile strains of the unicellular cyanobacterium sp. strain PCC 6803 readily aggregate into flocs, or floating multicellular assemblages, when grown in liquid culture. As described here, we used confocal imaging to probe the structure of these flocs, and we developed a quantitative assay for floc formation based on fluorescence imaging of 6-well plates.

View Article and Find Full Text PDF

Two truncated analogues of the polyenyl photoprotective xanthomonadin pigments have been synthesised utilising an iterative Heck-Mizoroki (HM)/iododeboronation cross coupling approach and investigated as models of the natural product photoprotective agents in bacteria. Despite the instability of these types of compounds, both analogues proved to be sufficiently stable to allow isolation, spectroscopic analysis and biological studies of their photoprotective behaviour which showed that despite their shorter polyene chain length, they retained the ability to protect bacteria from photochemical damage; i.e.

View Article and Find Full Text PDF

Heterocyst-forming cyanobacteria are multicellular organisms that grow as chains of cells (filaments or trichomes) in which the cells exchange regulators and nutrients. In this article, we review the morphological, physiological and genetic data that have led to our current understanding of intercellular communication in these organisms. Intercellular molecular exchange appears to take place by simple diffusion through proteinaceous structures, known as septal junctions, which connect the adjacent cells in the filament and traverse the septal peptidoglycan through perforations known as nanopores.

View Article and Find Full Text PDF

Bacteria contain large numbers of negatively-charged proteins to avoid the electrostatic interactions with ribosomes that would dramatically reduce protein diffusion.

View Article and Find Full Text PDF

The natural light environment is important to many prokaryotes. Most obviously, phototrophic prokaryotes need to acclimate their photosynthetic apparatus to the prevailing light conditions, and such acclimation is frequently complemented by motility to enable cells to relocate in search of more favorable illumination conditions. Non-phototrophic prokaryotes may also seek to avoid light at damaging intensities and wavelengths, and many prokaryotes with diverse lifestyles could potentially exploit light signals as a rich source of information about their surroundings and a cue for acclimation and behavior.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores the structural dynamics of cell membranes, focusing on the thylakoid membrane of the cyanobacterium Synechococcus elongatus, which is key to photosynthesis and respiration.
  • Researchers used advanced microscopy techniques to visualize the arrangement and movement of photosynthetic complexes like photosystem I, photosystem II, and cytochrome bf at the molecular level.
  • The findings reveal how these complexes reorganize in response to environmental changes, which could inform the development of artificial photosynthetic systems and enhance our understanding of other cell membranes.
View Article and Find Full Text PDF

Filamentous cyanobacteria have developed a strategy to perform incompatible processes in one filament by differentiating specialized cell types, N-fixing heterocysts and CO-fixing, photosynthetic, vegetative cells. These bacteria can be considered true multicellular organisms with cells exchanging metabolites and signaling molecules via septal junctions, involving the SepJ and FraCD proteins. Previously, it was shown that the cell wall lytic -acetylmuramyl-L-alanine amidase, AmiC2, is essential for cell-cell communication in .

View Article and Find Full Text PDF