Background: The improvements in genomics methods coupled with readily accessible high-throughput sequencing have contributed to our understanding of microbial species, metagenomes, infectious diseases and more. To maximize the impact of these genomics studies, it is important that data from biological samples will become publicly available with standardized metadata. The availability of data at public archives provides the hope that greater insights could be obtained through integration with multi-omics data, reproducibility of published studies, or meta-analyses of large diverse datasets.
View Article and Find Full Text PDFEnvironmental estrogens have been the subject of intense research due to their documented detrimental effects on the health of fish and wildlife and their potential to negatively impact humans. A complete understanding of how these compounds affect health is complicated because environmental estrogens are a structurally heterogeneous group of compounds. In this work, computational molecular dynamics simulations were utilized to predict the binding affinity of different compounds using rainbow trout (Oncorhynchus mykiss) estrogen receptors (ERs) as a model.
View Article and Find Full Text PDFJ Comput Chem
January 2011
This report details an approach to improve the accuracy of free energy difference estimates using thermodynamic integration data (slope of the free energy with respect to the switching variable λ) and its application to calculating solvation free energy. The central idea is to utilize polynomial fitting schemes to approximate the thermodynamic integration data to improve the accuracy of the free energy difference estimates. Previously, we introduced the use of polynomial regression technique to fit thermodynamic integration data (Shyu and Ytreberg, J Comput Chem, 2009, 30, 2297).
View Article and Find Full Text PDFMolecular dynamics simulations were used to determine the binding affinities between the hormone 17-estradiol (E2) and different estrogen receptor (ER) isoforms in the rainbow trout, Oncorhynchus mykiss. Previous phylogenetic analysis indicates that a whole genome duplication prior to the divergence of ray-finned fish led to two distinct ER isoforms, ER and ER, and the recent whole genome duplication in the ancestral salmonid created two ER isoforms, ER and ER. The objective of our computational studies is to provide insight into the underlying evolutionary pressures on these isoforms.
View Article and Find Full Text PDFThis report presents the application of polynomial regression for estimating free energy differences using thermodynamic integration data, i.e., slope of free energy with respect to the switching variable lambda.
View Article and Find Full Text PDFTerminal restriction fragment length polymorphism (T-RFLP) analysis is a popular high-throughput fingerprinting technique used to monitor changes in the structure and composition of microbial communities. This approach is widely used because it offers a compromise between the information gained and labor intensity. In this review, we discuss the progress made in T-RFLP analysis of 16S rRNA genes and functional genes over the last 10 years and evaluate the performance of this technique when used in conjunction with different statistical methods.
View Article and Find Full Text PDFA web-based resource, Microbial Community Analysis (MiCA), has been developed to facilitate studies on microbial community ecology that use analyses of terminal-restriction fragment length polymorphisms (T-RFLP) of 16S and 18S rRNA genes. MiCA provides an intuitive web interface to access two specialized programs and a specially formatted database of 16S ribosomal RNA sequences. The first program performs virtual polymerase chain reaction (PCR) amplification of rRNA genes and restriction of the amplicons using primer sequences and restriction enzymes chosen by the user.
View Article and Find Full Text PDF