Publications by authors named "Conor W Taylor"

New Findings: What is the topic of this review? Blood-flow-restricted (BFR) exercise represents a potential approach to augment the adaptive response to training and improve performance in endurance-trained individuals. What advances does it highlight? When combined with low-load resistance exercise, low- and moderate-intensity endurance exercise and sprint interval exercise, BFR can provide an augmented acute stimulus for angiogenesis and mitochondrial biogenesis. These augmented acute responses can translate into enhanced capillary supply and mitochondrial function, and subsequent endurance-type performance, although this might depend on the nature of the exercise stimulus.

View Article and Find Full Text PDF

Sprint interval training (SIT) combined with postexercise blood flow restriction (BFR) is a novel method to increase maximal oxygen uptake (V̇o) in trained individuals and also provides a potent acute stimulus for angiogenesis and mitochondrial biogenesis. The efficacy to enhance endurance performance, however, has yet to be demonstrated. Trained male cyclists ( n = 21) (V̇o: 62.

View Article and Find Full Text PDF

This study investigated protein kinase activation and gene expression of angiogenic factors in response to low-load resistance exercise with or without blood flow restriction (BFR). In a repeated measures cross-over design, six males performed four sets of bilateral knee extension exercise at 20% 1RM (reps per set = 30:15:15:continued to fatigue) with BFR (110 mmHg) and without (CON). Muscle biopsies were obtained from the vastus lateralis before, 2 and 4 h post-exercise.

View Article and Find Full Text PDF

Purpose: The effects of low-volume interval and continuous 'all-out' cycling, matched for total exercise duration, on mitochondrial and angiogenic cell signalling was investigated in trained individuals.

Methods: In a repeated measures design, 8 trained males ([Formula: see text], 57 ± 7 ml kg(-1) min(-1)) performed two cycling exercise protocols; interval (INT, 4 × 30 s maximal sprints interspersed by 4 min passive recovery) or continuous (CON, 2 min continuous maximal sprint). Muscle biopsies were obtained before, immediately after and 3 h post-exercise.

View Article and Find Full Text PDF

This investigation assessed the efficacy of sprint interval training (SIT) combined with postexercise blood-flow restriction as a novel approach to enhance maximal aerobic physiology and performance. In study 1, a between-groups design was used to determine whether 4 weeks (2 days per week) of SIT (repeated 30 s maximal sprint cycling) combined with postexercise blood-flow restriction (BFR) enhanced maximal oxygen uptake (V̇(O2max)) and 15 km cycling time-trial performance (15 km TT) compared with SIT alone (CON) in trained individuals. The V̇(O2max) increased after BFR by 4.

View Article and Find Full Text PDF