We report the development of a novel line-scanning microscope capable of acquiring high-speed time-correlated single-photon counting (TCSPC)-based fluorescence lifetime imaging microscopy (FLIM) imaging. The system consists of a laser-line focus, which is optically conjugated to a 1024 × 8 single-photon avalanche diode (SPAD)-based line-imaging complementary metal-oxide semiconductor (CMOS), with 23.78 µm pixel pitch at 49.
View Article and Find Full Text PDFCardiac myosin binding protein-C (cMyBP-C) is a thick filament-associated regulatory protein frequently found mutated in patients suffering from hypertrophic cardiomyopathy (HCM). Recent in vitro experiments have highlighted the functional significance of its N-terminal region (NcMyBP-C) for heart muscle contraction, reporting regulatory interactions with both thick and thin filaments. To better understand the interactions of cMyBP-C in its native sarcomere environment, in situ Foerster resonance energy transfer-fluorescence lifetime imaging (FRET-FLIM) assays were developed to determine the spatial relationship between the NcMyBP-C and the thick and thin filaments in isolated neonatal rat cardiomyocytes (NRCs).
View Article and Find Full Text PDFThe light chains (KLCs) of the heterotetrameric microtubule motor kinesin-1, that bind to cargo adaptor proteins and regulate its activity, have a capacity to recognize short peptides via their tetratricopeptide repeat domains (KLC). Here, using X-ray crystallography, we show how kinesin-1 recognizes a novel class of adaptor motifs that we call 'Y-acidic' (tyrosine flanked by acidic residues), in a KLC-isoform-specific manner. Binding specificities of Y-acidic motifs (present in JIP1 and in TorsinA) to KLC1 are distinct from those utilized for the recognition of W-acidic motifs, found in adaptors, that are KLC-isoform non-selective.
View Article and Find Full Text PDF