Current diagnostic modalities, such as radiographs or computed tomography, exhibit limited ability to predict the outcome of bone fracture healing. Failed fracture healing after orthopaedic surgical treatments are typically treated by secondary surgery; however, the negative correlation of time between primary and secondary surgeries with resultant health outcome and medical cost accumulation drives the need for improved diagnostic tools. This study describes the simultaneous use of multiple (n = 5) implantable flexible substrate wireless microelectromechanical (fsBioMEMS) sensors adhered to an intramedullary nail (IMN) to quantify the biomechanical environment along the length of fracture fixation hardware during simulated healing in ex vivo ovine tibiae.
View Article and Find Full Text PDFDiagnostic monitoring and prediction of bone fracture healing is critical for the detection of delayed union or non-union and provides the requisite information as to whether therapeutic intervention or timely revision are warranted. A promising approach to monitor fracture healing is to measure the mechanical load-sharing between the healing callus and the implanted hardware used for internal fixation. The objectives of this study were to evaluate a non-invasive measurement system in which an antenna electromagnetically couples with the implanted hardware to sense deflections of the hardware due to an applied load and to investigate the efficacy of the system to detect changes in mechanical load-sharing in an ex vivo fracture healing model.
View Article and Find Full Text PDF