Publications by authors named "Conor Parks"

Ten percent of children with cancer harbour a mutation in a predisposition gene. In children with the kidney cancer, Wilms tumour, the prevalence is as high as 30%. Certain predispositions are associated with defined histological and clinical features, suggesting differences in tumourigenesis.

View Article and Find Full Text PDF

Determining the viability of a new drug molecule is a time- and resource-intensive task that makes computer-aided assessments a vital approach to rapid drug discovery. Here we develop a machine learning algorithm, iMiner, that generates novel inhibitor molecules for target proteins by combining deep reinforcement learning with real-time 3D molecular docking using AutoDock Vina, thereby simultaneously creating chemical novelty while constraining molecules for shape and molecular compatibility with target active sites. Moreover, through the use of various types of reward functions, we have introduced novelty in generative tasks for new molecules such as chemical similarity to a target ligand, molecules grown from known protein bound fragments, and creation of molecules that enforce interactions with target residues in the protein active site.

View Article and Find Full Text PDF

In the context of relapsed and refractory childhood pre-B cell acute lymphoblastic leukemia (R/R B-ALL), CD19-targeting chimeric antigen receptor (CAR)-T cells often induce durable remissions, which requires the persistence of CAR-T cells. In this study, we systematically analyzed CD19 CAR-T cells of 10 children with R/R B-ALL enrolled in the CARPALL trial via high-throughput single-cell gene expression and T cell receptor sequencing of infusion products and serial blood and bone marrow samples up to 5 years after infusion. We show that long-lived CAR-T cells developed a CD4/CD8 double-negative phenotype with an exhausted-like memory state and distinct transcriptional signature.

View Article and Find Full Text PDF

Microphysiological systems (MPS; organ-on-a-chip) aim to recapitulate the 3D organ microenvironment and improve clinical predictivity relative to previous approaches. Though MPS studies provide great promise to explore treatment options in a multifactorial manner, they are often very complex. It is therefore important to assess and manage technical confounding factors, to maximise power, efficiency and scalability.

View Article and Find Full Text PDF

Protein-ligand binding affinity is a key pharmacodynamic endpoint in drug discovery. Sole reliance on experimental design, make, and test cycles is costly and time consuming, providing an opportunity for computational methods to assist. Herein, we present results comparing random forest and feed-forward neural network proteochemometric models for their ability to predict pIC50 measurements for held out generic Bemis-Murcko scaffolds.

View Article and Find Full Text PDF

The Drug Design Data Resource (D3R) aims to identify best practice methods for computer aided drug design through blinded ligand pose prediction and affinity challenges. Herein, we report on the results of Grand Challenge 4 (GC4). GC4 focused on proteins beta secretase 1 and Cathepsin S, and was run in an analogous manner to prior challenges.

View Article and Find Full Text PDF

The Drug Design Data Resource aims to test and advance the state of the art in protein-ligand modeling by holding community-wide blinded, prediction challenges. Here, we report on our third major round, Grand Challenge 3 (GC3). Held 2017-2018, GC3 centered on the protein Cathepsin S and the kinases VEGFR2, JAK2, p38-α, TIE2, and ABL1, and included both pose-prediction and affinity-ranking components.

View Article and Find Full Text PDF

Nanocrystals are receiving increased attention for pharmaceutical applications due to their enhanced solubility relative to their micron-sized counterpart and, in turn, potentially increased bioavailability. In this work, a computational method is proposed to predict the following: (1) polymorph specific dissolution kinetics and (2) the multiplicative increase in the polymorph specific nanocrystal solubility relative to the bulk solubility. The method uses a combination of molecular dynamics and a parametric particle size dependent mass transfer model.

View Article and Find Full Text PDF

Current polymorph prediction methods, known as lattice energy minimization, seek to determine the crystal lattice with the lowest potential energy, rendering it unable to predict solvent dependent metastable form crystallization. Facilitated by embarrassingly parallel, multiple replica, large-scale molecular dynamics simulations, we report on a new method concerned with predicting crystal structures using the kinetics and solubility of the low energy polymorphs predicted by lattice energy minimization. The proposed molecular dynamics simulation methodology provides several new predictions to the field of crystallization.

View Article and Find Full Text PDF